
TrackMate documentation.

Jean-Yves Tinevez

August 9, 2016

This document constitutes the TrackMate documentation. It is divided in four parts, that
group sections by interest.

• The first part contains three tutorials, aimed at end-users. They are meant to guide users
with the TrackMate plugin as a single-particle tracking Fiji plugin. They cover the three
applications of the plugin:

– automated single-particle tracking;
– manual curation and correction of tracking results;
– manual and semi-automatic tracking.

• The second part contains technical information. It documents the use of some Track-
Mate components and gives their exact definition, accuracy and performance. This part
is meant to guide the user in choosing the right algorithm for their application.

• The third part is aimed at advanced users, that want to analyze the tracking results in
another so�ware package, or use a scripting language to configure and run TrackMate
programmatically.

• The last part is made of seven tutorials aimed at Java developers and document how to
extend TrackMate with custom modules. The seven tutorials document a specific Track-
Mate module (detection, particle-linking, etc) but are best read first in order, as they
introduce developers to the annotation mechanism used for automatic plugin discovery.

1

http://imagej.net/TrackMate

Contents

I. Tutorials. 7

1. Using TrackMate for automated single-particle tracking. 7
1.1. Introduction. 7
1.2. The test image. 7
1.3. Starting TrackMate. 7
1.4. The start panel. 8
1.5. Choosing a detector. 10
1.6. The detector configuration panel. 11
1.7. The detection process. 12
1.8. Initial spot filtering. 13
1.9. Selecting a view. 14
1.10. Spot filtering. 15
1.11. Selecting a simple tracker. 17
1.12. Configuring the simple LAP tracker. 18
1.13. Our first tracking results. 19
1.14. Configuring a not so simple tracker. 19
1.15. Filtering tracks. 21
1.16. The end or so. 22
1.17. Wrapping up. 23

2. Manual editing of tracks using TrackMate. 23
2.1. Introduction. 23
2.2. The test image: Development of a C.elegans embryo. 24
2.3. Generating a sub-optimal segmentation. 24
2.4. Generating irrelevant tracks. 26
2.5. Launching TrackScheme. 26
2.6. TrackScheme in a nutshell. 27
2.7. Ge�ing rid of bad tracks. 28
2.8. Spot editing with the HyperStack Displayer. 29

2.8.1. With the mouse. 29
2.8.2. With the keyboard. 30

2.9. Adding missed spots. 31
2.10. Editing tracks: creating links. 31

2.10.1. By drag & drop. 31
2.10.2. Using selection and right-click menu. 32
2.10.3. Creating several links at once. 33

2.11. Editing tracks: deleting links. 33
2.12. Wrapping up. 33

2

3. Manual and semi-automated tracking with TrackMate. 34
3.1. Se�ing up. 34
3.2. Creating spots one by one. 35
3.3. Create and removing single links. 36
3.4. The auto-linking mode. 37
3.5. Tracks are updated live. 38
3.6. Track and spot features are updated live. 38
3.7. Step-wise time browsing for sparse annotations. 39
3.8. The semi-automatic tracking tool. 40
3.9. Keyboard shortcuts for manual editing of tracks in the main view. 41

II. Technical documentation. 42

4. TrackScheme manual. 42
4.1. Moving around in TrackScheme. 42
4.2. Configuring TrackScheme look. 43
4.3. Exporting TrackScheme display. 45
4.4. Managing a selection in TrackScheme. 46
4.5. TrackScheme info-pane and feature plots. 47
4.6. Editing tracks with TrackScheme. 47

4.6.1. Linking spots with the popup menu item. 47
4.6.2. Triggering re-layout and style refresh. 48
4.6.3. Linking spots with drag and drop. 49
4.6.4. Removing spots and links. 49
4.6.5. Editing track names and imposing track order. 49
4.6.6. Editing spot names and imposing branch order. 49

5. Description of TrackMate algorithms. 50
5.1. Spot detectors. 51

5.1.1. Spot features generated by the spot detectors. 51
5.1.2. Laplacian of Gaussian particle detection (LoG detector). 51
5.1.3. Di�erence of Gaussian particle detection (DoG detector). 52
5.1.4. Downsample LoG detector. 52
5.1.5. Handling the detection of large images with the Block LoG detector. . 53

5.2. Spot analyzers. 53
5.2.1. Mean, Median, Min, Max, Total intensity and its Standard Deviation. 53
5.2.2. Contrast & Signal/Noise ratio. 53
5.2.3. Estimated diameter. 54

5.3. Spot trackers or particle-linking algorithms. 54
5.3.1. LAP trackers. 54
5.3.2. Linear motion tracker. 57

3

6. Particle-linking algorithms accuracy. 60
6.1. The ISBI 2012 single particle challenge. 60
6.2. Current TrackMate version accuracy against the ISBI dataset. 60

6.2.1. Scenarios. 61
6.2.2. Example images from the challenge dataset. 61
6.2.3. Accuracy measurements. 62
6.2.4. Parameter used. 63
6.2.5. Results. 63

6.3. Comments. 68

7. Spot detectors performance. 69
7.1. The test environment. 69
7.2. Processing time for a 2D image as a function of its size. 70
7.3. Processing time for a 3D image as a function of its size. 71
7.4. Processing time for a 2D image as a function of the spot radius. 71
7.5. Processing time for a 3D image as a function of the spot radius. 72
7.6. Choosing between DoG and LoG based on performance. 73

III. Interoperability. 74

8. Importing and analyzing TrackMate data in MATLAB. 74
8.1. Installation of TrackMate functions for MATLAB. 74
8.2. The simple case of linear tracks. 74
8.3. Importing the spot feature table. 77
8.4. Importing the edge track table. 80
8.5. Importing TrackMate data as a MATLAB graph. 84
8.6. Other MATLAB functions for TrackMate. 91
8.7. Application examples and links. 91

9. Scripting TrackMate in Python. 92
9.1. A full example. 92
9.2. Loading and reading from a saved TrackMate XML file. 95
9.3. Export spot, edge and track numerical features a�er tracking. 98
9.4. Manually creating a model. 101

IV. Extending TrackMate. 106

10. How to write your own edge feature analyzer algorithm for TrackMate. 106
10.1. Introduction. 106
10.2. TrackMate modules. 106
10.3. Basic project structure. 107
10.4. Core class hierarchy. 108
10.5. Feature analyzers specific methods. 108

4

10.6. Multithreading & Benchmarking methods. 111
10.7. The core methods. 112

10.7.1. isLocal(). 112
10.7.2. process(Collection< DefaultWeightedEdge > edges, Model model). . 113

10.8. Making the analyzer discoverable. 113

11. How to write your own track feature analyzer algorithm for TrackMate. 115
11.1. Introduction. 115
11.2. Track analyzers. 115
11.3. Track feature analyzer header. 115
11.4. Declaring features. 116
11.5. Accessing tracks in TrackMate. 117
11.6. Calculating the position of start and end points. 118
11.7. Wrapping up. 118
11.8. How to disable a module. 119

12. How to write your own track feature analyzer algorithm for TrackMate. 120
12.1. Introduction. 120
12.2. Spot analyzers and spot analyzer factories. 120
12.3. The spot analyzer factory. 120
12.4. The spot analyzer. 121
12.5. Using SciJava priority to determine order of execution. 123
12.6. Wrapping up. 123

13. How to write your own viewer for TrackMate. 124
13.1. Introduction. 124
13.2. A custom TrackMate view. 124
13.3. The ViewFactory. 125
13.4. The TrackMateModelView interface. 125

13.4.1. Methods. 125
13.4.2. Display se�ings. 126
13.4.3. Listening to model changes. 127
13.4.4. Listening to selection changes. 127

13.5. A simple event logger. 127
13.6. Controlling the visibility of your view with the SciJava visible parameter. . . 130

14. How to write custom actions for TrackMate. 131
14.1. Introduction. 131
14.2. The TrackMateActionFactory interface. 131

14.2.1. SciJava parameters recapitulation. 131
14.2.2. Action factory methods. 131

14.3. The TrackMateAction interface. 133
14.4. Wrapping up. 134

5

15. How to write your own detection algorithm for TrackMate. 135
15.1. Introduction. 135
15.2. The SpotDetector interface. 136

15.2.1. A detector instance operates on a single frame. 136
15.2.2. A SpotDetector can be multithreaded. 136
15.2.3. Detection results are represented by Spots. 137
15.2.4. A dummy detector that returns spiraling spots. 137

15.3. The SpotDetectorFactory interface. 141
15.3.1. Ge�ing the raw image data. 141
15.3.2. Ge�ing detection parameters through a configuration panel. 142
15.3.3. Checking the validity of parameters. 142
15.3.4. Saving to and loading from XML. 143
15.3.5. Instantiating spot detectors. 144
15.3.6. The code for the dummy spiral generator factory. 145

15.4. Wrapping up. 148

16. How to write your own particle-linking algorithm for TrackMate. 148
16.1. Introduction. 148
16.2. Simple, undirected graphs. 148
16.3. Graphs in TrackMate. 149
16.4. Particle-linking algorithms in TrackMate. 150
16.5. A dummy example: drunken cell divisions. 150
16.6. The factory class. 154
16.7. Wrapping up. 155

6

Part I.
Tutorials.
1. Using TrackMate for automated single-particle tracking.

1.1 Introduction.

This tutorial is the starting point for TrackMate users. It explains how it works by walking you
through a simple case, using an easy image.

The TrackMate plugin provides a way to automatically segment spots or roughly spherical
objects from a 1D, 2D or 3D image, and track them over time. It follows the classical single-
particle tracking scheme, where the detection step and the particle-linking step are separated.
Therefore each step is handled in the user interface by a specific panel, and you will go back in
forth through them. Also, TrackMate works like a fishing net with small holes: it will find as
much spots as it can, even the ones you are not interested. So there is a step to filter them out
before tracking. In these views, TrackMate resembles a bit to the Spot Segmentation Wizard
of Imaris™.

1.2 The test image.

The test image we will use for this tutorial has now a link in Fiji. You can find it in File

Open Samples Tracks for TrackMate (807K) , at the bo�om of the list.

This is 128x128 stack of 50 frames, uncalibrated. It is noisy, but is still a very easy use case:
there is at most 4 spots per frame, they are well separated, they are about the same size and
the background is uniform. It is such an ideal case that you would not need TrackMate to
deal with it. But for this first tutorial, it will help us ge�ing through TrackMate without being
bothered by di�iculties.

Also, if you look carefully, you will see that there are two spli�ing events - where a spot
seems to divide in two spots in the next frame, one merging event - the opposite, and a gap
closing event - where a spot disappear for one frame then reappear a bit further. TrackMate
is made to handle these events, and we will see how.

1.3 Starting TrackMate.

With this image selected, launch TrackMate from the menu Plugins Tracking TrackMate or
from the Command launcher. The TrackMate GUI appears next to the image, displaying the
starting dialog panel.

7

http://imagej.net/TrackMate
http://imagej.net/TrackMate
http://www.bitplane.com/go/products/imaris
http://imagej.net/Using the Command Launcher

But first, just a few words about its look. The user interface is a single frame - that can be
resized - divided in a main panel, that displays context-dependent dialogs, and a permanent
bo�om panel containing the four main bu�ons depicted on the right.

The Next bu�on allows to step through the tracking process. It might be disabled de-
pending on the current panel content. For instance, if you do not select a valid image in the
first panel, it will be disabled. The Previous bu�on steps back in the process, without exe-
cuting actions. For instance, if you go back on the segmentation panel, segmentation will not
be re-executed.

The Save bu�on creates a XML file that contains all of the data you generated at the
moment you click it. Since you can save at any time, the resulting file might miss tracks, spots,
etc. You can load the saved file using the menu item Plugins Tracking Load a TrackMate file . It
will restore the session just where you saved it.

Now is a good time to speak strategy when it comes to saving/restoring. You can save at
anytime in TrackMate. If you save just before the tracking process, you will be taken there
with the data you generated so far upon loading. TrackMate saves a link to the image file (as
an absolute file path) but not the image itself. When loading a TrackMate file, it tries first to
retrieve and open this file in ImageJ. So it is a good idea to pre-process, crop, edit metadata
and massage the target image first in Fiji, then save it as a .tif, then launch TrackMate.
Particularly if you deal with a multi-series file, such as Leica .lif files.

The advantage of this approach is that you load in TrackMate, and everything you need
will be loaded and displayed. However, if you need to change the target file or if it cannot be
retrieved, you will have to open the TrackMate XML file and edit its 4th line.

Save TrackMate
session to XML file.

Advance to next
step in the GUI.

Go back
one step.

Toggle
log window.

Toggle display
settings window.

1.4 The start panel.

This first panel allows you to check the spatial and temporal calibration of your data. It is very
important to get it right, since everything a�erwards will be based on physical units and not
in pixel units (for instance µm and minutes, and not pixels and frames). In our case, that does
not ma�er actually, since our test image has a dummy calibration (1 pixel = 1 pixel).

8

What is critical is also to check the dimensionality of the image. In our case, we have a
2D time-lapse of 50 frames. If metadata are not present or cannot be read, ImageJ tends to
assume that stack always are Z-stack on a single time-point.

If the calibration or dimensionality of your data is not right, it is best changing it in the
image metadata itself, using Image Properties (Shi� + P). Then press the Refresh source
bu�on on the TrackMate start panel to grab changes.

You can also define a sub-region for processing: if you are only interested in finding spots
in a defined region of the image, you can use any of the ROI tools of ImageJ to draw a closed
area on the image. Once you are happy with it, press the Refresh source bu�on on the panel
to pass it to TrackMate. You should see that the X Y start and end values change to reflect
the bounding box of the ROI you defined. The ROI needs not to be a square. It can be any
closed shape. If you want to define the min and max Z and / or T, you have to edit manually
the fields on the panel.

Defining a smaller area to analyze can be very beneficial to test and inspect for correct
parameters, particularly for the segmentation step. In this tutorial, the image is so small and
parse that we need not worrying about it. Press the Next bu�on to step forward.

9

1.5 Choosing a detector.

You are now o�ered to choose a detection algorithm ("detector") amongst the currently imple-
mented ones. The choice is actually quite limited. Apart from the Manual annotation, you will
find four detectors, but they are all based on the LoG filter [1]. They are described in detail
later, but here is what you need to know.

• The LoG detector applies a plain Laplacian of Gaussian filter on the image. All calcula-
tions are made in the Fourier space, which makes it optimal for intermediate spot sizes,
between 5 and 20 pixels in diameter.

• The DoG detector uses the di�erence of Gaussians approach to approximate a LoG filter
by the di�erence of two Gaussians. Calculations are made in the direct space, and it is
optimal for small spot sizes, below 5 pixels.

• The Downsample LoG detector uses the LoG detector, but downsizes the image by an
integer factor before filtering. This makes it optimal for large spot sizes, above 20 pixels
in diameter, at the cost of localization precision.

• The Block LoG detector splits the image in small blocks to limit memory usage in the
case of large input image.

In our case, let us just use the DoG detector.

10

1.6 The detector configuration panel.

The LoG-based detectors fortunately demand very few parameters to tune them. The only
really important one is the Estimated blob diameter. Just enter the approximate size of the
spots you are looking to tracks. Careful: you are expected to enter it in physical units. In our
dummy example, there is no calibration (1 pixel = 1 pixel), so it does not appear here.

There are extra fields that you can configure also. The Threshold numerical value aims at
helping dealing with situation where a gigantic number of spots can be found. Every spot with
a quality value below this threshold value will not be retained, which can help saving memory.
You set this field manually, and check how it fares with the Preview bu�on bu�on.

You can check Use median filter: this will apply a 3x3 median filter prior to any processing.
This can help dealing with images that have a marked salt and pepper noise which generates
spurious spots.

We hope that TrackMate will be used in experiments requiring Sub-pixel localization,
such as following motor proteins in biophysical experiments, so we added schemes to achieve
this. The one currently implemented uses a quadratic fi�ing scheme (made by Stephan Sa-
alfeld and Stephan Preibisch) based on David Lowe SIFT work [2]. It is not as accurate as the
algorithms typically used in super-localization, but has the advantage of being very quick,
compared to the segmentation time itself.

Finally, there is a Preview bu�on that allows to quickly check your parameters on the
current data. A�er some computations, you can check the results overlaid on the image. Most
likely, you will see plenty of spurious spots that you will be tempted to discard by adjusting
the Threshold value. This is a very good approach for large problems. Here, we care li�le for
that, just leave the threshold at 0.

The two others automated detectors share more or less the same fields in their own config-
uration panel. The Downsampled LoG detector simply asks for an extra down-sampling integer
factor. In our case, the spots we want to track are about 5 pixels in diameter, so this is what we

11

http://www.cs.ubc.ca/~lowe/keypoints/

enter in the corresponding field. We don’t need anything else. The Sub-pixel localization
option adds a very li�le time penalty so we can leave it on.

1.7 The detection process.

Once you are happy with the segmentation parameters, press the Next bu�on and the
segmentation will start. The TrackMate GUI displays the log panel, that you will meet several
times during the process. It is basically made of a text area that recapitulates your choices and
send information on the current process, and of a progress bar on top. You can copy-paste the
text if you want to keep track of the process somewhere. You can even add comments as text
in it: it is editable, and everything you type there is saved in the XML file, and retrieved upon
loading. You can access the log panel anytime, by clicking on the log bu�on at the bo�om
of the TrackMate window.

Should the process be long enough, you should be able to see that the Next bu�on turned
into a Cancel bu�on. If you press it while the detection is running, TrackMate will finish
the detection of the current frames, and stop. You could now go on with the spots it found, or
go back and restart.

TrackMate takes advantage of multi-core computers, which seems to be the standard nowa-
days. If the source image has more time-points than CPU cores, it will segment one time-frame
per core available. On computers with many cores, the progress bar will seems to move in a
bulky way: if you have 16 cores, 16 time-points will be segmented at once, and it is likely that
they will be finished approximately on the same time. So don’t be worried if the progress bar
does not move in the beginning for large images. If you have more cores than time-points,
then TrackMate will allocate cores di�erently and give more cores to each time-point. For
instance, if you have 12 CPU cores and only 4 time-points, each time-point will get 3 cores for
calculation.

12

On our dummy image, this is clearly something we need to worry about, and the segmenta-
tion should be over in a few seconds. Typically, this is the step that takes the most time. Once
the segmentation is done, the Next bu�on is re-enabled.

1.8 Initial spot filtering.

Here is a di�icult step to explain, particu-
larly because we do not need at all now.
If the explanations following in this para-
graph seem foggy, please feel free to press
the Next bu�on and skip to the next
paragraph. This one is all related to perfor-
mance, memory and disk usage in di�icult
cases.

TrackMate uses generic segmentation al-
gorithms for which there is only a li�le
number of parameters to specify. The price
to pay then, is that you can get a lot of un-
desired spots as an outcome. And in some
cases, a really large amount of those.

This is why there are spot features and
feature filters. In the next steps, each spot
will have a series of numerical features cal-
culated using its location, radius and the
image it is found in, such as the mean pixel
intensity. You will be able to define filters on these features, to retain only the ones that are
relevant to your study.

But for a very large number of spots - let’s say: more than 1 million of them - performance
issues can kick in. Those millions of spots will be stored in the model, and saved in the Track-
Mate file, in case you want to step back and change the filters, because for instance you
realized you are not happy with the end results (you can do that). Some visualization tools -
the 3D displayer for instance - will generate the renderings for those millions of spots at once
and hide or show them depending on the filter values, because it is too expensive to recreate
the renderings while tuning the filter values.

To deal with that, we added a first filter prior to any other step, that uses the Quality value.
The quality value is set by the detector, and is an arbitrary measure of the likelihood of each
spot to be relevant. This panel collects all the quality values for all spots, and display their
histogram (Y-scale is logarithmic). You can manually set a threshold on this histogram by
clicking and dragging in its window. All spots with a quality value below this threshold will
be discarded. That is: they will be deleted from the process, not saved in the file, they won’t
be displayed, nor their features will be calculated. Which is what we want when meeting
a gigantic number of spurious spots. Note that this step is irreversible: if you step back,
you will be taken to the detector configuration panel, ready to generate a new detection from
scratch.

13

In our case, we see from the histogram that we could make sense of this step. There is
a big peak at low quality (around a value of 1.2) that contains the majority of spots and is
most likely represent spurious spots. So we could put the threshold around let’s say 5.5 and
probably ending in having only relevant spots. But with less than 10 000 spots, we are very
very far from 1 million so we need not to use this trick. Leave the threshold bar close to 0 and
proceed to the next step.

1.9 Selecting a view.

Here, you can choose between the two vi-
sualization tools that will be used to dis-
play the tracking results. The first one, Hy-
perStack displayer, simply reuses ImageJ
stack window and overlay the results non-
destructively over the image. Choosing the
3D viewer will open a new 3D viewer win-
dow, import that image data in it, and will
display spots as 3D spheres and tracks as 3D
lines.

Honestly, choose the HyperStack dis-
player. Unless you have a very specific and
complicated case that needs to inspect re-
sults in 3D immediately, you do not need
the 3D viewer. The HyperStack displayer
is simpler, lighter, allow to manually edit
spots, and you will be able to launch a 3D
viewer at the end of the process and still get
the benefits.

When you press the Next bu�on, two process starts:

• the features of all spots (well, those you le� a�er the initial filtering step) are calculated;
• the displayer selected does everything it needs to prepare displaying them.

So nothing much. Let’s carry on.

14

1.10 Spot filtering.

The moment this panel is shown, the spots should be displayed on the ImageJ stack. They
take the shape of purple circles of diameter set previously. As promised, there are quite a lot
of them, and their vast majority are irrelevant. If you did not remove the irrelevant one in the
initial thresholding step, you should get an overlay that resembles the image to the right.

Trying to do particle linking on all these spots would be catastrophic, and there would be
no hope to make sense of the data as it is now. This is why there is this spot filtering step,
where you can use the features we just calculated to select the relevant spots only.

The spot filtering panel is divided in two. The upper part, which is empty now, contains the
filter you define, in the shape of histograms. We will come back to them soon. The bo�om
part contains the and bu�ons that allow to respectively add or remove a feature filter,
and a combo-box to set the display color of the spots.

Let us try it to play with it to find the best feature to filter out spurious spots.
By default , when the combo-box is on Uniform color, all spots are magenta. By clicking

on it, you see that you can select amongst all the possible features calculated. For instance, if
you select X, the spots will be colored according to their X position. A colored bar below the
combo-box indicates the range the color gradient corresponds to.

X does not seem to be a good feature to select relevant spots. We know that Quality should
be, by construction, but let us pick Mean intensity. By scrolling through the time slide you
should be able to see that now all the spurious spots have a blue to turquoise color, whether
the real one stands forward in red or yellow.

We will therefore add a filter based on this feature. Click the green bu�on. A small orange
box should appear in the upper part, containing the histogram for a given feature. Click on
the orange box combo-box to select Mean intensity. You should have something similar to the
image below.

15

We note that the histogram has a very desirable shape: a massive peak at low intensity
represent most of the spots. There are other smaller peaks at higher intensity, and fortunately,
they are very well separated from the large peak.

To move the threshold, simply click and drag inside the histogram window. Notice how the
overlay is updated to display only the remaining spots a�er filtering.

Interlude: A word on the GUI: We put e�ort into having a GUI that can be navigated almost
solely with the keyboard. Any of the small filter panel can be controlled with the keyboard.
For instance: give the histogram the focus by either pressing the Tab key or clicking into it.

• The floating threshold value should turn from orange to dark red. You can now type a
numerical value (including decimals using the dot ’.’ as separator); wait two seconds,
and the threshold value will be updated to what you just typed.

• Or use the arrow keys: the le� and right arrow keys will change the threshold value by
10%, the up and down arrow will set it to the max and min value respectively.

A filter can be set to be above or below the given threshold. You change this behavior using
the radio bu�ons below the histogram window. In our case, we want it to be above of course.
The Auto bu�on uses Otsu method [3] to determine automatically a threshold. In our case,
we will put it manually around 33.

You can inspect the data by scrolling on the hyperstack window and check that only mostly
good spots are retained. This is an easy image. The spots you have filtered out are not dis-
carded; they are simply not shown and they will not be taken into account when doing particle
linking. In a later stage, you can step back to this step, and retrieve the filtered out spots by
removing or changing the filters.

You can stack several filters by simply clicking on the green + bu�on. TrackMate will retain
the spots that satisfy to all (logical and) the criteria set by the filters.

Press Next when you are ready to build tracks with these spots.

16

1.11 Selecting a simple tracker.

The next panel let you choose amongst available particle-linking algorithms, or "trackers".
The apparent profusion of choices should

not disorient you, for it just that: an appear-
ance. We chose to focus on the Linear As-
signment Problem (LAP) in the framework
first developed by Jaqaman et al. [4].

The first two LAP trackers are based on
LAP, with important di�erences from the
original paper described here. We focused
on this method for it gave us a lot of flexi-
bility and it can be configured easily to han-
dle most cases. You can tune it to allow
spli�ing events, where a track splits in two,
for instance following a cell that encounters
mitosis. Merging events are handled too in
the same way. More importantly are gap-
closing events, where a spot disappear for
one frame (because it moves out of focus,
because segmentation fails, ...) but the track
manages to recuperates and connect with
reappearing spots later.

These LAP algorithm exists in TrackMate in two flavors: a simple one and a not simple one.
There are again the same, but the simple ones propose fewer configuration options and a thus
more concise configuration panel. In short:

• The simple one only allows to deal with gap-closing events, and prevent spli�ing and
merging events to be detected. Also, the costs to link two spots are computed solely
based on their respective distance.

• The not simple one allows to detect any kind of event, so if you need to build tracks that
are spli�ing or merging, you must go for this one. If you want to forbid the detection of
gap-closing events, you want to use it as well. Also, you can alter the cost calculation to
disfavor the linking of spots that have very di�erent feature values.

There is also a 3rd tracker, the Nearest neighbor search tracker. This is the most simple
tracker you can build, and it is mostly here for demonstration purposes. Each spot in one
frame is linked to another one in the next frame, disregarding any other spot, thus achieving
only a very local optimum. You can set a maximal linking distance to prevent the results to
be totally pathological, but this is as far as it goes. It may be of use for very large and easy
datasets: its memory consumption is very limited (at maximum only two frames need to be in
memory) and is quick (the nearest neighbor search is performed using Kd-trees [6]).

The 4th tracker, Linear motion LAP tracker is well suited for particles that move with a
roughly constant velocity, this velocity being di�erent for each particle. Its compared accuracy
and relevance for various scenario is discussed later.

17

http://imagej.net/TrackMate_algorithms#Main_differences_with_the_Jaqaman_paper.5B1.5D
https://en.wikipedia.org/wiki/Nearest_neighbor_search
https://en.wikipedia.org/wiki/K-d_tree

Then of course, there is the option to skip the automated tracking using Manual tracking.
Right now, in our first trial, let us pick the Simple LAP tracker.

1.12 Configuring the simple LAP tracker.

As promised, there is only three configuration fields.

• The first one defines the maximal allowed linking distance. This value limits the spatial
search range for candidate matching spots. If you know the maximal displacement of
your object between two frame, you can put this value here. Theoretically, a too large
value will demand more computation time. In our case, seeing the size of the dataset,
this does not ma�er at all. This distance must be expressed in physical units, but again,
you don’t see it there for there is no spatial calibration on our image.

• The second field defines the maximal distance for gap-closing. Two track segments will
not be bridged if the last spot of the first segment is further away than the first spot of
the second segment. In our dummy example stack, there is spot disappearance at the
frame number 45, top le�. So the spot on frame 44 and the spot on frame 46 must not
be separated by more than the distance you set there to have a chance to be linked.

• The third field also deal with the detection of gap-closing events, and sets the maximal
frame interval between two spots to be bridged. Careful, the time is set in frame interval,
here we do not want the physical time. In our case, since the only disappearance event
we have last one frame, we can simply put this value to 2 frames duration. But actually
it does not ma�er, as you can see by experimenting.

Press Next to start the tracking computation.

18

1.13 Our first tracking results.

You are now shown the log panel, where the tracking process is logged. Since our dataset
is very small, it should complete very quickly. Press Next again to see the results. They
should look like this:

Basically, the tracker held its promises: there is
6 tracks (the two immobile spots at the bo�om le�
part of the image contributed a track each). These
tracks are not branching. The red track indeed con-
tains a gap closing event, that did not generate a track
break. That would have been di�erent if we would
have used the Nearest neighbor search tracker: as it
cannot deal with gap-closing events, we would have
7 tracks.

The track colors are yet meaningless; there are just
used to facilitate separating di�erent tracks visually.

Now, we would like the shape of these tracks to
change. We see that the yellow track is actually
branching from the blue one at frame 10. The same
goes for the orange track, which branches from the
green one at frame 17, and merges to the blue one at
frame 27. To deal with that, we need to change of tracker. So go two steps back using the
Previous bu�on and go back to the tracker choice panel. There, select the LAP tracker and
move to its configuration panel.

1.14 Configuring a not so simple tracker.

19

Look at the configuration panel. It is quite more complex than for the simple tracker, obviously,
and it is the price for flexibility. Since it is quite long, the panel has to be scrolled to its bo�om
to venture on all fields. However, this apparent complexity is not that di�icult to harness. If
you look carefully, you will see that the main panel is made of 4 quasi-identical panel. Each
one deals with one event type:

The first one deals with the frame-to-frame linking. It consists in creating small track seg-
ments by linking spots in one frame to the spots in the frame just a�er, not minding anything
else. That is of course not enough to make us happy: there might be some spot missing, failed
detection that might have caused your tracks to be broken. But let us focus on this one now.
Linking is made by minimizing a global cost (from one frame to another, yet). The base cost of
linking a particle with another one is simply the squared distance between the two particles,
which is the adequate cost definition to retrieve particle motion when it exhibits Brownian
motion [5]. Following the proposal of Jaqaman et al. [4], we also consider the possibility for a
particle not to make any link, if is advantageous for the global cost. The sum of all costs are
minimized to find the set of link for this pair of frame, and we move to the next one. As for the
simple tracker, the Max distance field helps preventing irrelevant linking to occur. Two spots
separated by more than this distance will never be considered for linking. This also saves some
computation time and complexity.

The Feature penalties let you tune the linking cost using some measures of spot similarity.
Typically in the single particle tracking framework, you cannot rely on shape descriptors to
identify a single object across multiple frames, for spots are "shapeless": they are just described
by a X, Y, Z, T position tuple. Yet, you might know your Biology be�er. For instance, you might
be in the case where the mean intensity of a spot is roughly conserved along time, but vary
even slightly from one spot to another. Or it might be the spot diameters, or its intensity
distribution. Feature penalties allow you to penalize links between spots that have feature
values that are di�erent. Since the case you study might be anything, you can pick any feature
to build your penalties.

If you want to use feature penalties for frame-to-frame linking, simply press the green +
bu�on in the sub-panel. A combo-box will appear, in which you can choose the target feature.
The text field to its right allows specifying the penalty weight. Feature penalties will change
the base cost. We will not go in the details here (particularly because we are not going to
use feature penalties in this tutorial), but basically, two spots with di�erent features will have
a linking cost higher than if the selected features values were the same. The weight allows
you to specify how much you want to penalize a specific feature di�erence. A weight of 10 is
already very penalizing.

In our case, given the sparsity of spots, we do not need help from the features at all. Remove
any penalties you might have added, using the red - bu�on.

The three other sub-panels deal with the second pass of the linking algorithm, where you
take track segments created above and relink them. This gap-closing part is already known to
you, it is the same as we saw in the previous section: you have to specify a maximal distance,
and a maximal frame separation. You can also specify feature penalties, like for frame-to-
frame linking. They will be computed on the last spot of the first segment and the first spot
of the 2nd segment you are trying to bridge.

The 3rd and 4th panels deal respectively with track spli�ing events and track merging events.

20

The mechanisms at play are the same that for the gap-closings: track segments are bridge
together depending on the penalties and on the max distance allowed. Track spli�ing and
merging are only allowed from one frame to the next one.

For track spli�ing, the middle of a segment is o�ered to bridge to the start of another
segment. For track merging, the end of a segment is o�ered to bridge to the middle of
another one. A check box sets whether you want to forbid or allow any of these events.

As an exercise, try to find the parameters the will fuse the central track segments in a single
large track, with two spli�ing events and a merge event. You should obtain the track layout
pictured below.

1.15 Filtering tracks.

The next panel is just the equivalent of the spot filtering step we met before, but this time we
use track features. The filter principles are the same: you simply add filters, choosing a target
feature, until you are happy with the remaining tracks. As for the spots, the tracks are not
really deleted; they are just hidden and you can retrieve them by switching back to this panel
and delete the filters.

21

Here, we have a total of 4 tracks. The two immobile spots of the bo�om le� contribute one
track each, that we can barely see because they do not move much. Let us say that we want
to get rid of them. There are several ways to do that, but the simple is simply to add a filter
on track displacement, as pictured above.

1.16 The end or so.

We are now close to the end of a typical
workflow for a tracking problem. The panel
you see now is the one that recapitulates
display option. You can set spot color by
feature, hide them, show their name, etc...
Find out what they do, display options are
pre�y much self-explanatory.

The TrackScheme bu�on launches a
module that allow manually editing tracks,
and performing analysis on them. It is the
subject of another tutorial.

If you press Next, you will see that
there is still two panels a�er this one. The
first one allows to plot any kind of feature as
a function of another one. TrackMate deals
with 3 kind of features: spot, link and track
feature, depending on where it makes sense
to compute them. For instance, instanta-
neous velocity is computed over a link (be-
tween two spots linked in a track), so you will find it on the Links tab. The + and - bu�ons

22

http://imagej.net/TrackScheme

allow you add several features on the Y-axis, and they will be pooled on the same graph or
not, depending on the dimensionality of the features.

The last panel is the Action chooser panel, that allows you to execute simple actions on your
data, such as exporting, copying, re-calculating feature, etc...

If you are happy with the results, you can save them now. Loading the resulting file again
in TrackMate will bring you to this panel, where you can inspect those results conveniently

1.17 Wrapping up.

That is the end of this introductory tutorial. As you can see, it is quite long. Hopefully that
does not mean that TrackMate itself is complicated. We detailed what you could do for the
tracking part (the analysis and editing part is still to be seen), but if you recapitulate what we
changed from the default, that was pre�y simple:

• we set the segmentation diameter to 5;
• we added a spot filter on mean pixel intensity;
• we picked a not-so-simple tracker and allowed for spli�ing and merging;
• we added a track filter on displacement.

Now that you know how the plugin works, you should be able to reach the end result in less
than 30 seconds...

2. Manual editing of tracks using TrackMate.

2.1 Introduction.

This tutorial show how to manually edit, correct and create spots and tracks in TrackMate.
You might want to use manual editing to correct mistakes of automated detection or tracking,
to do a full manual annotation of a dataset, or to create a "ground-truth" data.

Manual annotation is seldom the most adequate alternative: depending on the size of the
target data, it can take an important amount of time and energy, is not objective, and is not
reproducible. But sometimes you have to bite the bullet, whether because a detector does not
exist for your kind of images, or because it is quicker to manually correct error than to come
with the ultimate, flawless algorithm.

Also, tracking is di�icult in bio-imaging: images have o�en by construction a very low SNR,
and there is a very wide range of variability amongst experiment types. TrackMate includes
generic tracking and segmentation algorithms, and therefore does not exploit the specificity
of each problem. It is likely that there are going to be some defects on the di�icult use cases
you will use it on, and these defects should not stop your science. So there should be a way
to manually correct and edit the tracking results. We tried to make it as convenient, easy and
quick as possible in TrackMate, should your science requires it.

It is a good idea to be already familiar with the automated segmentation in TrackMate, fol-
lowing the Ge�ing started with TrackMate tutorial. Here, we will use an incorrect automated

23

http://imagej.net/TrackMate
http://imagej.net/Getting started with TrackMate

segmentation result, and correct it manually. It is perfectly possible to skip the automated
part and to do the whole process manually.

2.2 The test image: Development of a C.elegans embryo.

Download the target image here: Celegans-5pc-17timepoints.zip (34 MB). It is a rather large
file, so it is zipped. Unzip it somewhere; you should end up having a single ti� file, Celegans-
5pc-17timepoints.tif of about 100 MB.

Open it in Fiji. You will get a stack, made of 41 Z-slices over 17 time-points, each image
being 240 x 295. As you can see in Image Properties (Shi� + P), it has a spatial and temporal
calibration.

The context if the following: We used a C.elegans strain named AZ212 that has its histone
H2B coupled to the eGFP. The nuclei can therefore be seen in the 488 nm excitation fluores-
cence channel. The movie started just a�er the first cell division, so you can see on the first
frame two blob-like spots in the center of the egg. On the top-right part of the egg, there is
also two smaller spots that are the polar bodies. One will remain at a fixed place, the other
one will be pushed around as the cells divide. The movie has 17 time-points that span the first
34 minutes of the C.elegans embryo development.

We were trying to assess the impact of phototoxicity on development in this movie. We
used a rather strong laser power, which explains the relatively good quality of the image, and
the fact that this egg’s development is slowed down compared to a classical development at
21°C. On this movie, we manually erased another egg that was lying on the top le�-corner of
the image, which makes it suitable only for educational purposes.

We want to reconstruct the cell lineage from this movie. Ideally, we will end up in having
four tracks: two for the the two cells present on the first frame, and two for the polar bodies.
The cell tracks will be branching, following cell division.

This tutorial uses the following strategy: we will use an inadequate set of segmentation
parameters to simulate defects in segmentation. Then we will use a tracking algorithm that
does not take into account the possibility for a cell to divide, and will not use the spot feature
to make linking robust, thus generating linking defects. Finally, we will learn how to correct
these defects manually.

2.3 Generating a sub-optimal segmentation.

Launch TrackMate Plugins Tracking TrackMate and select the C.elegans stack as a target.
Check on the first panel that all the spatial calibration is OK. The pixel size is about 200 nm in
XY, 1 µm in Z, and each frame is separated by 2 minutes.

Select the Downsampled LoG detector. This choice actually makes sense: the nuclei are about
8 µm in diameter, and with a sampling of 200 nm, that makes 40 pixels wide nuclei. It is already
advantageous to use the down-sampled version of the LoG segmenter above 20 pixels: seg-
menting 3D data over time takes already quite some time. Having to track large objects allow
to downsample them, making the data to iterate over smaller, which speed up the process.

This comes at a cost: the localization precision. To simulate segmentation defects, we will
make it very bad. In the segmenter configuration panel, choose a down-sampling factor of 10

24

http://samples.fiji.sc/Celegans-5pc-17timepoints.zip
http://www.wormbase.org/db/gene/strain?name=AZ212;class=Strain
https://research.pasteur.fr/fr/team/imagopole/

(a factor of 4 would have been wiser), and a target nuclei radius of 8 µm, as depicted below.

The segmentation should take you no more than a minute, even on a standard machine, a
considerable improvement over a standard detector. But at what cost!

On the Initial thresholding panel, we see that it is easy to separate spurious spots using the
Quality feature only. There is a big and sharp peak at the le� of the histogram. By moving the
slider around you can get the remaining number of spot a�er filtering. If we put the threshold
around 70, just above the first sharp peak, we see that we are le� with about 115 spots. Now:
We have 17 time-points, each of them containing at most 4 cells and two polar bodies (check
the raw movie). So 115 remaining spots seems to be correct, therefore the threshold set at 70
seems right.

Now move to the next panel. On the Displayer choice panel you must pick the HyperStack

Displayer. It is the only one that allows for manual editing.
On the Spot filters panel, the results of the detection will appear. It is likely that our results

are the same if you used the same numerical values as above. And you can see that there are
still a lot of spurious spots amongst the remaining 115. We were wrong when we selected the
initial threshold.

Anyway, let’s correct it now. Just add a filter on �ality, and take a value of 200; 63 spots
should remain, and the spurious ones should disappear.

Almost all polar bodies are incorrectly detected, and the localization of cells is bad. These
are expected defects given our choice of detection algorithm and the parameters we have used.
Here, the results are not so bad, unfortunately for this tutorial. We could fix them right now,
before tracking. You can actually edit the results any time a�er the first panel of TrackMate.
But let us exploit these defects for our training purpose, by having them generating additional

25

linking defects.

2.4 Generating irrelevant tracks.

Normally, TrackMate can robustly handles track spli�ing events,
representing e.g. cell division. Though this happens in this movie,
we choose to dismiss this possibility in the automated tracking
part.

In the Tracker choice panel, select the Simple LAP tracker.
Leave the default values for the parameters, and press Next.
You should end up in having something similar to the image to
the right.

A quick assertion shows that for nuclei, the individual track
branches are not so bad. Each of the retained spot could use some
fine tuning, but the tracks are not completely pathological, disre-
garding the fact that spli�ing events are missed. The polar bodies
tracking results are hopeless.

This is what we will now manually correct.

2.5 Launching TrackScheme.

Move to the Display options panel, skipping the track filtering part.
TrackScheme is a TrackMate tool for the visualization and editing of tracks. It displays a

kind of "track map", where a track is laid on a pane, arranged vertically over time, as a Parisian
subway train map. Tracks are displayed hierarchically, discarding the spatial location of each
spot. Each spot is laid out going through time from top to bo�om. It is a great tool particularly
to study and edit lineages.

TrackScheme also allows manually editing the tracks. Press the TrackScheme bu�on
on the last panel. By default, the tracks are displayed as colored circles joined by lines. Each

26

http://imagej.net/TrackScheme
http://imagej.net/TrackScheme

circle represent a spot, and the lines represent a link connecting two dots. The selection in
TrackScheme is share across TrackMate, so if you select one circle, it will be highlighted in the
HyperStack viewer as well (circled in green).

TrackScheme launches with a simple style: each spot is represented with a circle. You can
get more information by changing the style. Next to the Style bu�on in the TrackScheme
toolbar, there is combo-box in which you can select either simple or full. Select full. Each spot
is now represented by a rounded rectangle, with the default name printed on the right. Go back
in the TrackScheme toolbar. Next to the style combo-box, there is greyed-out bu�on showing
three small images . Press it; a�er some time, each spot in TrackScheme will contain a
thumbnail of the spot taken in the raw image. This is very handy to quickly detect detection
problems.

2.6 TrackScheme in a nutshell.

You can do quite some things using TrackScheme, notably track analysis. This is not the focus
of this tutorial, we will simply be focusing on the track editing features. However, here is a
brief description of what the toolbar bu�ons do.

27

Refresh the track layout. Use this for instance after you created some new
links to have tracks rearranged.

Refresh the track style. When you change a feature or edit the tracks, the
coloring is not updated live. You have to press this button to refresh it.

This combo-box let you select the style with which spots are represented in
TrackScheme. The full style displays spot thumbnails.

Toggle thumbnail capture on/off. If on, every change to a spot will be
reflected on his thumbnail in TrackScheme. Toggling it off and on also

triggers the capture of all thumbnails.

Toggle link creation by drag & drop. If enabled, you will be able to create
new links simply by dragging from the center of a spot to another one.

Zoom control: zoom, unzoom and reset zoom value.

 Export the current TrackScheme layout to ImageJ. The first one captures
undecorated layout; the second captures decorations and take the zoom

level into accoutn.

Export the TrackScheme layout to various image file format.

Loop between various levels of backround decorations.

Search toolbar that moves TrackScheme display to spots with names that
match the search text.

We will be mainly using the Redo layout bu�on.

2.7 Ge�ing rid of bad tracks.

We will first start by removing all the bad spots and tracks. We decide not to keep the tracks
generated by the polar bodies, and only to keep the tracks that follow the two nuclei.

• Move to the Track_3 column in TrackScheme. You can see that it is following the static
polar body.

• We wish to select it at once. There is two way you can do it:

– Draw a selection rectangle around the whole track representation.
– Select one spot or link in the track. Right-click anywhere on TrackScheme: a menu

appears, in which you will find Select whole track.

• Notice in the displayer that the selected track appear with a green and thick line, so as
to highlight it.

28

• To delete all of it, simply press the Delete key in TrackScheme, or use the right-click
menu to do so.

Do the same for Track_1, since we do not care for polar bodies.
Press the Redo layout bu�on when you are done. There should be four tracks remaining.

Notice that their color changed as you deleted some of them. Their default color-map goes
from blue to red and is re-adjusted every time the track number changes.

2.8 Spot editing with the HyperStack Displayer.

We now wish to correct for segmentation mistakes, that caused some nuclei to be missed. Cre-
ating new spots is made directly in the HyperStack displayer. First, make sure the TrackMate
tool (represented by a blue track over a green background) is selected in the ImageJ toolbar,
as pictured below:

The HyperStack displayer let you edit spots in two ways:

2.8.1 With the mouse.

Moving an existing spot.

• Double-click inside a spot on the displayer to select it for editing. It becomes green with
a dashed line.

• Click and drag inside the selected spot to move its center around. To move it Z or in time,
simply move the sliders at the bo�om of the window and the spot will follow (shortcuts:

< & > for Z, Alt + > & Alt + < to move in time).
• When you are happy with its new location, double-click anywhere to leave the editing

mode. You should notice that its thumbnail in TrackScheme gets updated.

Creating a new spot.

• Double-click on the image outside of any spot.
• A new spot is created, and is selected for edition.
• The previous remarks apply to change its location.

Deleting an existing spot.

• Select a spot by single-clicking inside it. It turns green.
• Press the Delete key.

29

Changing the radius of a spot.

• Select a spot for editing by double-clicking inside it.
• By holding the Alt key, rotates the wheel bu�on. This will change the spot’s radius.
• Holding Shi� + Alt changes its radius faster.
• Double-click anywhere when you are happy with the new radius. The spot thumbnail in

TrackScheme gets updated.

2.8.2 With the keyboard.

I have found using the mouse clicks sub-optimal and painful for the carpal bones when editing
a lot of spots. Using a combination of the mouse and keyboard proved to be more e�icient.
For this to work, the HyperStack window must be selected.

Moving an existing spot.

• Lay the mouse over the target spot (you do not need to select it).
• Hold the Space key.
• Move the mouse around. The target spot follows the mouse location until you release

the Space key.

Creating a new spot.

• Lay the mouse anywhere on the image.
• Press the A key.
• A new spot is added at the mouse location.

By default, the new spot has the radius of the last spot edited with the mouse. So if you
want to set the default radius, just double-click inside a spot that has the desired radius, then
double-click again to leave editing mode. From now on, the radius of this spot will by used by
default.

Deleting an existing spot.

• Lay the mouse over the target spot.
• Press the D key.
• The target spot is deleted.

Changing the radius of a spot.

• Lay the mouse over the target spot.
• Press the E key to increase its radius, Q to diminish it.
• Shi� + Q and Shi� + E change the radius by a bigger amount.

30

2.9 Adding missed spots.

You now have the tools to correct the mistakes our crude detection made. Unfortunately for
this exercise, there is just one: At the last time-point the le�most cell just divided, but one of
the daughter cell has been missed.

Notice that when you add spots, they also appear in the TrackScheme window as a magenta
cells, on the far right in a lane without track number (under the column Unlaid spots). As long
as you do not incorporate them in a track, they will remain there.

Also, if you feel courageous, you can improve the look of your TrackScheme layout by ad-
justing the spot radii. There is however an automated way to do so, which will see later.

You should end up in having a corrected segmentation, where every nuclei correspond to
one spot in TrackMate, and it at the right location. Time yourself doing so, so that you learn
how much you have to invest on manually correcting segmentation results, and decide if it is
acceptable.

2.10 Editing tracks: creating links.

Now we want to connect the lonesome spots to the track they belong to. This is all about
creating links, and there are two ways to do that.

2.10.1 By drag & drop.

You can create a link between two cells in TrackScheme simply by enabling the linking bu�on
on the TrackScheme toolbar, and dragging a line between the source cell and the target cell.

This is pictured below, where the fore-to-last cell of the track 4 is connected to the new spot.
For visibility on this screenshot, we brought the target cell closer to the lane of the track 4.
You can normally find it either on the far right of the panel.

31

Press the Redo layout bu�on to see the arranged result. The first spot is now incorpo-
rated in the right track.

2.10.2 Using selection and right-click menu.

The cell in TrackScheme cannot be easily moved. When the source and target cells are far
away, it might be be�er to use another way to create links. We do this using the shared
selection.

In TrackScheme, find the first spot of Track_4, in frame 9. When you click on the corre-
sponding cell in TrackScheme, it gets highlighted in green. In the HyperStack viewer, the
displayed slice and time points are changed to display the spot, also highlighted in green.

We want to link this cell to the mother cell in Track_0, frame 8, just before it divided. To do
so,

• In the HyperStack displayer, move to the frame 8.
• Hold the Shi� key.
• Click on the mother cell.

It gets highlighted in the displayer, and in TrackScheme as well. You now have two cells in
the selection.

To create a link between the two,

• Right-click anywhere in TrackScheme.
• In the menu that pops-up, select Link 2 spots.

The newly created link is displayed in magenta. Note that the track arrangement is not
changed; you need to press the Redo layout bu�on to rearrange the tracks. A�er doing
so, you should now see a branching track, as picture below. Notice that the track colors are
out of sync. The colors are not automatically updated when changing a track layout. You have
to click the Style bu�on in the TrackScheme toolbar to do so. Do so.

32

2.10.3 Creating several links at once.

Using Shi� + click , we can put several cells in the selection, and create the links between each
pair. We don’t have the need for it, but this is a good way to create a single track from several
solitary spots: Just select them all (dragging a selection box or Shi� + click) and select the Link
N spots menu item.

2.11 Editing tracks: deleting links.

We do not have much to say here. The tracks we generated had missing links, but no spurious
ones. So we do not need to remove any. But here is how to do it: In TrackScheme, select the
target link by clicking on it; it gets highlighted in the displayer as well. Press the Delete key
to remove it. Removing a link o�en splits a track in two new tracks. To have them properly
re-arranged, press the Redo layout bu�on.

2.12 Wrapping up.

Plus or minus the localization errors and some incorrect cell radii, you now have the full lineage
in 3D of this short movie. This concludes this tutorial on manual editing in TrackMate. Here
is a picture of the final results:

33

3. Manual and semi-automated tracking with TrackMate.

The previous TrackMate tutorial - Manual editing of tracks using TrackMate is dedicated to
manually correcting the results of an automated process. This small tutorial here shows how
to do a fully manual annotation, from scratch, with TrackMate.

3.1 Se�ing up.

We will use the same, simple dataset that for Ge�ing started with TrackMate . You can find it
in File Open Samples Tracks for TrackMate (807K) .

As for the TrackMate plugin, you could start it up normally, selecting Plugins Tracking

TrackMate in the menu, and then when o�ered to select a detector and a tracker, always pick
the manual one. That would work well, but we o�ered another entry point that has a simpler
GUI dedicated to manual tracking. Pick the Plugins Tracking Manual tracking with TrackMate

menu item.
You should should get the layout pictured below. Notice that we are already displaying the

Display options panel of the classic GUI, and that the Previous bu�on is disabled at the

34

http://imagej.net/Manual editing of tracks using TrackMate
http://imagej.net/TrackMate
http://imagej.net/Getting started with TrackMate

bo�om. Notice also that the color scales for both spot and track features display a dummy
range.

3.2 Creating spots one by one.

The main view (the one that re-uses the HyperStack viewer of ImageJ) can readily edit the
tracks. You just have to make sure that the TrackMate tool is selected in the ImageJ toolbar:

With this tool selected, you can now make the image window active and use the mouse of
the keyboard to create spots. Here are the commands for the mouse:

• Double-click anywhere in the image to create a spot and enter the edit mode. The edited
spot is highlighted with a green, dashed circle, as pictured below:

• To leave the edit mode, Double-click again anywhere. The spot is then added to the data
model.

• To edit it again, Double-click inside the spot. Its outline is now dashed; you are back in
the edit mode.

35

• While in the edit mode, you can move the edited spot around by clicking inside the spot
and dragging it around. The spot will follow you if you change the time or the Z slider,
and it will be added to the right plane upon leaving the edit mode.

• You can also change its radius by using Alt + Mouse wheel . Using Shi� + Alt + Mouse wheel

changes the spot radius faster.

This is how you edit the data with the mouse. You can also use the keyboard:

• To create (or add) a spot, press A with the mouse at the desired location. By default,
the new spot will have the radius of the last spot you edited with the double-click mode.
So if you want to have all spots of a certain radius, edit a spot by double-clicking inside
it, set its radius using Alt + Mouse wheel , and leave the edit mode. This will "capture" the
spot radius and apply it anywhere a�er.

• To move a spot around, press Space with the mouse over the target spot. Then move the
mouse around. No need for mouse clicks.

• To delete a spot, press the D key with the mouse over the target spot.
• To change a spot radius, press Q and E over the target spot. Shi� + Q and Shi� +

E change the radius by a larger amount.

And that’s it for spot creation.

3.3 Create and removing single links.

All we have done so far was to create single spots, that are not part of any tracks. Tracks are
created on the fly when you link several spots together. You can do it in TrackScheme, as
explained elsewhere. Here is how to do it directly on the image. To go on, create a few spots
above the bright blob of the source image. We need at least a couple of them in consecutive
frames.

We need to add spots to the selection The selection in TrackMate is a very useful tool for
inspection, particularly because it is shared amongst all the possible views of a session, in-
cluding e.g. TrackScheme. When you click in a spot, the selection is made of this spot, and all
views are centered on the target spot.

To create a link, we need exactly two spots to be in the selection. To add or remove a spot
from the selection, use Shi� + click . Selected spots are highlighted with a green, thick circle.
To empty the selection, click on an empty (no spot) part of the image.

Once you have two spots in the selection, you can create a link between them by simply
pressing the L key. It should be immediately displayed, as on the example below.

36

http://imagej.net/TrackScheme
http://imagej.net/TrackScheme

As you can see, there is nothing that prevents you from creating a link over many frames,
between any two spots. A spot can have several link arriving or departing from it. The only
impossible things is to create a link between two spots that belong to the same frame.

Removing a link is done the same way: Select exactly two spots that are connected by a
link, and press the L key. The link will be removed.

3.4 The auto-linking mode.

Creating long tracks this way would be tedious, as you would always have to select a spot
before creating a link. There is way to simplify this.

Press Shi� + L to toggle the auto-linking mode on/o�. When the mode is on, new spots will
be automatically created to the spot in the selection (if there is only one). Then the selection is
set to be the newly created spot, which allows you to quickly trace tracks by moving through
frames and pressing the A key over the desired location. When the auto-linking mode is
activated, spots can not be deselected by clicking in an empty are of the image anymore.

Let’s apply this to our data. First create a spot over the bright blob at the top of the first
frame, and roughly adjust its radius. Make sure the selection contains this spot, and only it (it
must be highlighted in green), and press Shi� + L to toggle the auto-linking mode on. Then
move the second frame and place the mouse over the new spot location. Press A ; a spot is
created AND it is linked to the first spot by a track normally painted in red. Repeat until you
reach about the frame 15 (the track branches, at some point, you have to decide what way you
want to go). You should get - rather quickly - something like the picture on the right.

Tracks created this way do not have to be linear. You can create branching segments simply
by remembering that in the auto-linking mode, links are created between the last selected
spot.

Therefore, to create the branch that goes on the right, go back on the frame 9 (the frame
just before the branching happens) and click into the spot that’s there to select it. Then move

37

to the next frame and create the spots that belong to the right branch, just like you did before.
These spots will be added to the same track, and should get a inverted Y-branch like pictured
below.

3.5 Tracks are updated live.

Note that you do not have to worry about what track a spot belongs to when creating a link.
Tracks are automatically managed on the fly. If you now create a second link between a pair
of spots that are not connected with anything, a new track will be created automatically, and
the color of the first ones will change.

The same is valid when you delete a link or a spot. For instance, let’s create 3 tracks out of
our inverted Y. Go to the frame 9, and delete the spot that is at the crossing. You now have
three tracks.

3.6 Track and spot features are updated live.

TrackMate uses computes and uses some numerical features for its spots, edges and tracks.
You can use these features to color the TrackMate objects.

For instance this is what happened in the previous section, when you deleted a spot and
created 3 tracks out of one. On the GUI panel, the tracks were configured to have their color
set by the track index. When you removed the spot, the track index was recalculated and used
to give the track a color that ranges from blue to red.

The track and spot colors are refreshed immediately in the HyperStack displayer. Note,
though, that the color range in the GUI has not been updated. It still displays -Infinity →

Infinity. This is by construction, to alleviate a bit the load when editing large models. If
you want to refresh the color range, you have to click directly on it, and it will be properly
repainted. You can see below what we get if we pick the feature Y for spot coloring, and the

38

track index, a�er refreshing.

3.7 Step-wise time browsing for sparse annotations.

For images with many time-points, it might be desirable to generate a quick manual annota-
tion of it by skipping some frames in the tracks. For instance, if the particles you track do not
move too much from one frame to another, some frames may be skipped without confusion.
Two keyboard shortcuts allow to jump from time-step to time-step: F and G will step in
time by multiple of 5 frames (by default). Note that time jumps to multiples of 5: with F

and G you always access the frames 1, 6, 11, etc regardless of your current frame number.
This ensures that if you pick this technique to annotate an image, all the spots you add will
be in the same frames, which is handy for visualization.

The time step can be changed in the TrackMate tools window. This is a special window
useful for manual annotation, that you access by double-clicking on the TrackMate icon in
the ImageJ toolbar. This window has several uses, described below. The step size for time-step
browsing is defined with the Stepwise time browsing numeric field.

39

double-click

3.8 The semi-automatic tracking tool.

TrackMate includes a tool that can automatically find spots and automatically link them to
build a track. This is extremely handy to annotate images for which the automated detection
in bulk yields too much spurious spots. This tool is configured in the TrackMate tool option
panel, pictured above.

We are interested in the Semi-automatic tracking panel. The bo�om panel has just con-
venience bu�ons that allow you to select tracks or parts of tracks from the current selection
(great to delete faulty tracks at once), and the right panel is a log.

The semi-automatic tracking tool itself works as follow: It takes the single spot in the se-
lection, and use its radius to build a neighborhood of this spot, but in the next frame. It then
searches this neighborhood for a bright blob with a similar radius. If the found spot is close
enough and have a quality high enough, it is linked to the first spot. The process is then re-
peated, until no suitable spot can be found or until there is no time-point to inspect anymore.

The Quality threshold and the Distance tolerance se�ings allow to tune the tool. A quality
threshold of 0.5 means that the spot found must have a quality of at least 50% the quality of
the first spot to be accepted. A distance tolerance of 2 means that it must not be further
away than twice the radius of the previous spot to be accepted. Max nFrames sets a limit to
the process. Even if successful each frame, the semi-automatic tracking will stop the specified
number of frames have been iterated. When the process stops, the reason is printed in the log
window.

Let’s put this in practice. Go to the frame 16 (or wherever you stopped annotating in the
previous section), and select the last spot of the right track. You can start the semi-automatic
tracking by either clicking on the purple bu�on on the tool panel, or by pressing the Shi� +

A key. The tracking process is updated live. How far can it go really depends on the radius
you set for the first spot, so results may vary.

40

3.9 Keyboard shortcuts for manual editing of tracks in the main view.

We recapitulate here the keyboard shortcuts we used above. Note that they are only functional
when the main view is active and the TrackMate tool selected in the ImageJ toolbar.

Caps Lock

Shift Shift

increase radius

decrease radius

change radius
faster/slower

- create a spot
- +Shift: auto tracking

Esc F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

remove a spot

hold space inside a spot:
move the spot around

Delete

remove selection

+Shift: remove spots from current frame
and copy spots from previous frame

- link two spots in the selection
- +Shift: toggle auto-linking mode

step-wise time browsing
backward/forward

41

Part II.
Technical documentation.
4. TrackScheme manual.

TrackScheme displays a kind of "track map", where a track is laid on pane, arranged vertically
over time, as a Parisian subway train map. In TrackScheme, the image data as well as the spa-
tial location of spots are completely discarded in favor of a hierarchical layout that highlights
how cells divide in time.

In the display se�ings panel of TrackMate, click on the TrackScheme bu�on. A new
window should appear, and depending on what you tracked, its content resembles this.

In TrackScheme, tracks are arranged from le� to right and time runs from top to bo�om.
At this time we just have a single track, with two branches. The cell we tracked divides imme-
diately a�er the first time-point, which is represented in TrackScheme by a fork going down.
Each branch below this fork represents the annotation of a daughter cell. However, all the
spots and links for these two daughter cells still belong to the same track, as they are con-
nected via the mother cell.

Though this view is very synthetic, there is a lot you can do with TrackMate.

4.1 Moving around in TrackScheme.

Moving around is done classically with the mouse, and the panning is triggered by holding
down the Space key:

• Mousewheel scrolls up and down.
• Shi� + Mousewheel scrolls le� and right.
• Space + Mousedrag pans the view, à la ImageJ. If you pull the mouse out of the Track-

Scheme window, it will scroll in the direction of the mouse cursor.
• Space + Mousewheel is used for zooming.

The keyboard can also be used:

42

• The numeric keypad numbers 6 , 9 , 8 , 7 , 4 , 1 , 2 and 3 are used to
move as on a compass.

• + zoom in.
• - zoom out.
• = restores the zoom to its default level.

The top-le� part of the TrackScheme window shows the outline of the graph. The blue
square represents the current view and can be resized and moved around.

TrackScheme outline.

Current view box.
Can be moved around.

Resize knob.

4.2 Configuring TrackScheme look.

Though TrackScheme is a view of the annotation data, it completely and purposely ignores
some the display se�ings you can set on the main GUI window, such as the track display
mode and the global visibility of spots and tracks. The color it chooses for the links and spots
representation is also peculiar: The spot color by feature mode is ignored, even for the circles
that represent spot. They take their color from the track color mode, and use the color of the
incident link. For instance, if you pick the Displacement feature in the track color mode, you
will get this:

43

Tracks have a name, and are arranged in columns, separated by a vertical black line. Track-
Scheme arranges the annotations line by line, and each line represents a time-point. The row
header tells you what time-point you are looking at. The background color of each row alter-
nates to highlight di�erent frames. If you find the background too crowded, you can disable
the alternating color by clicking on the Display decoration bu�on on the toolbar. The
second mode disables track columns and rows alternating colors; the third mode re-enables
track columns.

Finally, there is two Styles for the spot display. The simple style sonly displays them as
round spots. The full style displays them as rounded boxes, with each spot name apparent. In
the full style, small thumbnails can be captured and displayed in TrackScheme for all spots.
Just next to the menu, there is a thumbnail bu�on. If activated, thumbnails are collected from
all spots, using the image source they were created on. Thumbnails are captured around the
spot location, using their radius plus a tolerance factor. Interestingly, the Spot display radius
ratio is used to define the size of the thumbnail. For instance, with a display factor of 2, you
can obtain the layout below. Notice that the spot boxes can be resized manually to be�er
display thumbnails.

44

Style chooser.

Thumbnail
capture.

4.3 Exporting TrackScheme display.

The hierarchical layout of the lineages provided by TrackScheme can be useful for communi-
cations. It can be exported using the three export bu�ons in the toolbar.

Capture undecorated TrackScheme.

Capture TrackScheme with decorations.
Export to file.

• The Capture undecorated TrackScheme bu�on will generate a view of Track-
Scheme and open it in Fiji. The background is set to white and the zoom level is set to
the default, regardless of what the actual zoom is in TrackScheme. Once this image is
in Fiji, you can modify it, save it, etc using the tools in Fiji.

• The Capture TrackScheme with decorations bu�on does the converse. It captures
a snapshot of the TrackScheme window as is, and uses the current zoom level to generate
an image.

• The Export to... opens file browser on which you can pick the export file format and
its location. Many file formats are supported:

– PNG image file with/without transparent background.
– PDF or SVG file, that can later be edited with e.g. Illustrator.
– As a HTML page, though the layout is somewhat simplified.
– The now deprecated VML file format (replaced by SVG).
– As text, but this only saves a minimal amount of information.
– The MXE file format is a specialized XML format, that can be parsed with classical

XML parsers.
– And all the common image formats (PNG, JPEG, GIF, BMP).

45

4.4 Managing a selection in TrackScheme.

TrackScheme is useful to build a selection and query its properties. As we said above, Track-
Scheme does not abide any visibility se�ing. Spots and links are always visible, which is useful
to build a selection. Spots and links are added to the current selection in a classical way:

• Le�-Click on a spot or link to set the selection with this spot or link. The selection is
cleared before.

• Le�-Click outside a spot to clear the selection.
• Shi� + Le�-Click on a spot or link to add or remove this spot or link to the selection.
• Mousedrag to select multiple spots and links in a selection box. Hold Shi� to add them

to the current selection.

Adding to this, several items in the Right-click popup menu help selecting part of tracks. If
you Right-click on a spot or Right-click outside a spot with a non-empty selection, you can:

• Select whole track will include all the spots and the links of the tracks the selection
belongs to.

• Select track downwards walks from the spots and links in the selection, and add the
spots and links that connect from them, forward in time (downward in TrackScheme).

• Select track upwards does the same, but backward in time.

Selections are very useful for visualization within a crowded annotation. For instance, select
one of the two branches in our single track. With the default track display mode, the selection
is drawn on the MaMuT viewer as a thick green light that extends fully in time. The eighth
track display mode is called Show selection only and just does that. It displays in the main
view only the spots and links in the selection, with their proper color se�ings, and abide to the
frame and depth limit se�ings.

For instance, you can use it to only display a series of disjoint parts of a tracks:

46

4.5 TrackScheme info-pane and feature plots.

Another use of the selection is to display, plot and export information on its content. The le�
side bar of TrackScheme has two small panels dedicated to this, in addition to the outline
panel in the top le�.

The info pane in the middle le� takes the shape of a table, that displays the numerical
feature values of the spot selection as a table. Spots are arranged as columns and feature as
lines. This table can be exported to an ImageJ table with the Right-click popup menu.

The bo�om le� part if the spot feature plo�er. The Feature for X axis drop down menu
lets you choose what will be the feature used for the X axis. Feature for Y axis menus work
the same way. Y-axis features can be added and removed using the add and remove
bu�ons.

To generate the plot, click the Plot features bu�on. A graph should appear on which
you can interact a bit. Mousedrag towards the bo�om right direction will zoom the plot, and
Mousedrag towards to up right direction will reset the zoom. The Right-click menu lets you
configure the plot, save it to an image file and export it as an ImageJ table.

Info pane.
Show current spot selection
numerical feature values.
Export to ImageJ with
right-click menu.

Plot spot selection feature
values.

Pick feature for X axis.

Pick features for Y axis.

Add/Remove Y features to
the plot.

Feature plot.
Right-click to export,
save, etc.

4.6 Editing tracks with TrackScheme.

The main application of TrackScheme is to edit annotations in conjunction with creating and
moving spots on another view. Let’s do this now.

4.6.1 Linking spots with the popup menu item.

If you have a TrackScheme window opened while you create spots on the source image, you
should see them appearing in TrackScheme, under a special column on the right called Unlaid

spots. The TrackScheme window should then resembles this:

47

Normally, TrackScheme only displays the spots that belong in a track. Lonely spots that are
not linked to anything when you launch TrackScheme are not shown. The spots you create
a�er TrackScheme are however stacked under this special column. From there, you can a�ach
them to an existing track or create a new one.

Here is a way to do it. In TrackScheme using Mousedrag select all the spots in the unlaid
column. Right-click somewhere in TrackScheme to make the pop-up menu appear. One of the
menu item should be something like Link X spots. Choose this one. Each spots is then linked
to the next one, frame by frame, and the links should appear in TrackScheme and in other
views. You just created a new track.

4.6.2 Triggering re-layout and style refresh.

Notice that the TrackScheme display of this new track is somewhat unsatisfactory. The first
track may have changed color in the main view, but this change did not happen in Track-
Scheme. Plus, the new track does not have its own column, and the color of some of its spots
might be wrong. The reasons for this are:

• We changed the annotation and these changes a�ected the numerical features that color
the tracks. For instance, if you picked the Track index numerical feature for track col-
oring, there is now two tracks instead of one. The feature update is seen immediately
in the main view, but for performance reason, TrackScheme as well as the color line on
the main GUI window have to be refreshed manually. To do so, click on the Style
bu�on in the TrackScheme toolbar, and directly on the track color line on the main GUI
window.

• The changes we made a�ected the track hierarchy, but the re-layout is not triggered
automatically by such changes. To do so, press the Layout bu�on in TrackScheme
toolbar. This will reorganize TrackScheme with a proper layout. Since in TrackScheme,
spots can be moved around at will, this is also a good way to reorder things.

48

4.6.3 Linking spots with drag and drop.

Another way to create single links is to enable the drag-and-drop linking mode. In the Track-
Scheme toolbar, click on the grayed-out Toggle linking bu�on.

Now move over any cell in one track. As you do, the cell gets highlighted with a green
square. If you click and drag from this cell, a new link (in magenta) will emerge. Release it on
any cells to create a link between the source and the target.

4.6.4 Removing spots and links.

The last you link you added may have strongly perturbed our annotation, particularly if you
did what was on the screenshot above. Correct it by removing the last link. Simply select it
press Delete . The same key will remove everything in the selection.

4.6.5 Editing track names and imposing track order.

Tracks are ordered from le� to right alphanumerically with their name. To change a track
name, Double-click on it in the column header part. Track names should be made of a single
line with a combination of any character. You can change the track order by changing their
name. If you call the first one ’B’ and the second one ’A’, then click the Layout bu�on, they
will be permuted.

4.6.6 Editing spot names and imposing branch order.

Spots also have a name, that you can see either in the main view by checking the Display
spot names, either in TrackScheme by using the full display style. They are all called ID##

by default, which is not very informative.

49

To edit a spot name in TrackScheme, Double-click on the spot. It should be replaced by an
orange box in which you can type the spot name. Press Shi� + Enter to validate the new name,
or Escape to cancel the change. Spot names may be several lines long, but their display might
then not be very pleasing.

You can also set the name of several spots at once. For instance, select a whole track and
Right click (outside of a spot) to bring the popup menu. There is an item called Edit X spot

names. The closest spot is changed to an edit box. When you validate the new name, all the
selected spots get this new name.

Apart from their use to mark some biological meaning to the annotations, spot names have
several purposes. There is a search box in TrackScheme toolbar that centers the view on spots
with name matching the text you enter there. Press Enter to loop over all the matching spots.

Spot names are also used to decide in what order to lay out track branches. For instance,
in a track with a cell division, you can force one branch to be the laid le� or the right by
se�ing the name of the spot just a�er the division. Sister cells are laid out from le� to right
alphanumerically, like for tracks.

5. Description of TrackMate algorithms.

This section documents the current components of TrackMate. TrackMate has a modular de-
sign, meaning that it is made of di�erent modules that each have a specific role. Developers
can build their own module and re-used the other ones and the GUI to achieve a quick devel-
opment. The module types are (in the order you meet them when executing the plugin):

• Spot detectors. Taking your image data, they detect spots in them.
• Spot analyzers. Each spot can receive a wide range of features, calculated from their

location, radius and the image data. For instance: max intensity in spot, rough mor-
phology, etc... They are then used to filter out spurious spots and retain only good ones
for the subsequent tracking step.

• Views. Display the segmentation and tracking results overlaid on your image data.
• Spot trackers, or particle-linking algorithms. Take the filtered spots and link them

together to build tracks.

50

http://imagej.net/TrackMate

• Edge analyzers. Like for spot analyzers, but operate links between spots. Can be used
to report instantaneous velocity, link direction, etc...

• Track analyzers. Like for spot analyzers, but operate on whole track. Can be used to
report track mean velocity, track displacement, etc... They are also used to filter spurious
tracks.

• Actions. Miscellaneous actions you can take on the complete result of the tracking
process. It can be used to copy the track overlay to another image, launch a 3D viewer,
export the results to a simple format, generate a track stack, etc...

We describe here the best we can the current modules that are shipped with TrackMate.

5.1 Spot detectors.

5.1.1 Spot features generated by the spot detectors.

Behind this barbaric name stands the part responsible for spot detection in your image. The
algorithm currently implemented are very generic and naive. They will most likely fail for
complicated case such as touching objects, very weak SNR, etc. The three of them present are
all based on Laplacian of Gaussian filtering, which we describe below.

Detectors can very much vary in implementation and in the technique they rely on, but
they must all at least provide the following common spot features:

• X, Y, and Z: the spot coordinates in space. Coordinates are expressed in physical units
(µm, ...).

• R the spot radius, also in physical units. The current detectors only set this radius value
to be the one specified by the user. More advanced detectors could retrieve each spot
radius from the raw image.

• �ality: The implementation varies greatly from detector to detector, but this value
reflects the quality of automated detection. It must be a positive real number, large
values indicating good confidence in detection result for the target spot. This sole feature
is then used in the initial filtering step, where spots with a quality lower that a specified
threshold are purely and simply discarded.

The two other time features - T and Frame number - are set by TrackMate itself when
performing detection on all the time-points of the target raw data. T is expressed in physical
units, and the Frame number - starting from 0 - is simply the frame the spot was found in.

5.1.2 Laplacian of Gaussian particle detection (LoG detector).

The LoG detector is the best detector for Gaussian-like particles in the presence of noise[7]. It
is based on applying a LoG filter on the image and looking for local maxima [1]. The Laplacian
of Gaussian result is obtained by summing the second order spatial derivatives of the gaussian-
filtered image, and normalizing for scale:

51

in 1D: LoGσ = −σ
2
(
∂2

∂X 2

)
∗Gσ ∗ I

in 2D: LoGσ = −σ
2
(
∂2

∂X 2 +
∂2

∂Y 2

)
∗Gσ ∗ I

in 3D: LoGσ = −σ
2
(
∂2

∂X 2 +
∂2

∂Y 2 +
∂2

∂Z 2

)
∗Gσ ∗ I

where Gσ is the Gaussian filter operator with a standard deviation σ and I the source image.
The value of σ is tuned according to the particle radius, which is entered by the user: σ =

r/
√
n where n is the dimensionality of the source image (1 for 1D, etc) and r the radius of

the spot. In practice, filtering is made using real numbers, in the Fourier space to speed up
calculation. This makes this detector ideal for spot size between 5 and 20 pixels roughly. The
LoG kernel generation can handle anisotropic physical calibration (pixel sizes di�erent in X, Y
and Z), so that r and σ are in physical units. Local maxima in the filtered image yields spot
detections. Each detected spot is assigned a quality value by taking the local maxima value in
the filtered image. Spot with a quality lower than the value the detector is configured with are
discarded immediately. If requested, the location of retained spots is refined using a quadratic
fi�ing scheme derived from Lowe 2004 [2].

5.1.3 Di�erence of Gaussian particle detection (DoG detector).

This detector reproduce the LoG detector logic described above, but use an approximation
for the filtering step. Given d an approximate expected particle diameter, determined upon
inspection, two Gaussian filters are produced with standard deviation σ1 and σ2:

σ1 = 1/(1 +
√
2) × d

σ2 =
√
(2) × σ1

The image is filtered using these two Gaussian filters, and the result of the second filter (largest
sigma) is subtracted from the result of the first filter (smallest sigma). This yields a smoothed
image with sharp local maxima at particle locations. Spots are otherwise handled as for the
LoG detector.

5.1.4 Downsample LoG detector.

The Downsample LoG detector is made to handle large spots. If the sought spots span more
than 20 pixels in their smallest dimension, it is beneficial to down-sample the image prior to de-
tection. The down-sampling operation has a negligible cost compared to the gain achieved by
spot detection in a much smaller image. This detector handles the process of down-sampling
the source image by an integer factor provided by the user, applying the LoG detector on
the resulting image, and mapping the physical coordinates of the spots obtained back in the

52

source image referential. For 3D images with a pixel size larger in Z than in X and Y, the down-
sampling is tempered in Z to approach a quasi isotropic calibration in the down-sampled im-
age. The down-sampling factor should be chosen so that spots have a diameter of at least 5
pixels in the down-sampled image.

5.1.5 Handling the detection of large images with the Block LoG detector.

The detection of spots in large images can require a lot of memory. With the LoG detector
working on a 16-bit unsigned integer image, the source is first copied on 32-bit float numbers
(doubling its size), then the Fourier convolution requires another image placeholder using 64-
bit complex numbers (quadrupling its size). In the end, the detection requires an extra memory
space six times larger that the one occupied by the source image. If several time-points are
processed in parallel in multi-core computers, the required space is multiplied by the number
of time-points processed concurrently.

The Block LoG detector limits memory consumption by processing small blocks of the input
image sequentially. The number of blocks are specified by the user, and the partition generates
several XY blocks. This privileges classical microscopy images, where the extent of an image
in X and Y is much larger than in Z, and where the point-spread function is much larger along
Z than along X and Y. Each block is processed independently with the LoG detector, and the
resulting spot collections are pooled together. Spots lying on block borders might generate
spurious detection, being detected in two separate blocks. To avoid this, spots found within
the radius of another spot are discarded.

Several blocks might be processed in parallel, if the number of cores allocated to Track-
Mate is larger than 1. To avoid this, set the Parallel threads se�ings in the Edit Options

Memory & Threads... menu to 1.

5.2 Spot analyzers.

Spot features, such as Max intensity, Estimated diameter, etc, are calculated for all spots just
a�er the initial filtering step. They are then used to select spots, based on filters set to retain
only spots with a given feature below or above a specified threshold. Initial filtering is a good
way to limit spot feature calculation time on spots known to be spurious. The current features
however are made so that their calculation is cheap computationally.

5.2.1 Mean, Median, Min, Max, Total intensity and its Standard Deviation.

The plain statistical estimates are simply calculated from all the values for pixels within the
physical radius from the spot center.

5.2.2 Contrast & Signal/Noise ratio.

This contrast followed contrast definition:

C =
Iin − Iout

Iin + Iout

53

http://en.wikipedia.org/wiki/Michelson_contrast#Formula Michelson

where Iin is the mean intensity inside the spot volume (using the physical radius), and Iout is
the mean intensity in a ring ranging from its radius to twice its radius.

The spots SNR is computed as

SNR =
Iin − Iout

stdin

where stdin is the standard deviation computed within the spot.
These two values depend greatly on the correctness of the radius of each spot. Negative

values might be caused by incorrect radius.

5.2.3 Estimated diameter.

This feature estimates an optimal diameter for each spot, based on contrast calculation. The
mean pixel intensity is calculated in 20 concentric, tangent rings, centered at the target spot
location, and with radiuses ranging from a 10th of the spot radius to twice its radius. The
contrast at a given radius is defined as the di�erence between the mean intensity of a ring
with inner radius the radius sought, and the previous ring. The estimated diameter is then
defined as the radius that maximizes this contrast. A quadratic interpolation is performed to
improve diameter accuracy.

5.3 Spot trackers or particle-linking algorithms.

5.3.1 LAP trackers.

The Linear Assignment Problem (LAP) trackers implemented here follow a stripped down ver-
sion of the renowned method contributed by Jaqaman and colleagues [4]. We repeat here the
ideas found in the reference paper, then stresses the di�erences with the nominal implemen-
tation.

In TrackMate, the LAP framework backs up two instances of a tracker:

• the Simple LAP tracker;
• the LAP tracker.

The first one is simply a simplified version of the second: it has less se�ings and only deal
with particle that do not divide nor merge, and ignores any feature penalty (see below).

All the linking costs for these two trackers are based on the particle-to-particle square dis-
tance. If this tracker had to be summarized in one sentence, it would be the following: The
Simple LAP tracker and the LAP tracker are well suited for particle undergoing Brow-
nian motion. Of course, they will be fine for a non-Brownian motion as long as the particles
are not too dense.

Particle-linking happens in two step: track segments creation from frame-to-frame particle
linking, then track segments linking to achieve gap closing. The mathematical formulation
used for both steps is linear assignment problem (LAP): a cost matrix is assembled contained all
possible assignment costs. Actual assignments are retrieved by solving this matrix for minimal
total cost. We describe first how cost matrices are arranged, then how individual costs are
calculated.

54

Cost matrix for frame-to-frame linking. In the first step, two consecutive frames are
inspected for linking. Each spot of the first frame is o�ered to link to any other spot in the
next frame, or not to link. This takes the shape of a (n +m) × (n +m) matrix (n is the number
of spots in the frame t ,m is the number of spots in the frame t + 1), that can be divided in four
quadrants.

• The top-le� quadrant (size n ×m) contains the costs for linking a spot i in the frame t
to any spot j in the frame t + 1.

• The top-right quadrant (size n × n) contains the costs for a spot i in the frame t not to
create a link with next frame (yielding a segment stop).

• The bo�om-le� quadrant (size m ×m) contains the costs for a spot j in the frame t + 1
not to have any link with previous frame (yielding a segment start).

• The bo�om-right quadrant (sizem×n) is the auxiliary block mathematically required by
the LAP formalism. A detailed explanation for its existence is given in the supplementary
note 3 of the Jaqaman paper [4].. This quadrant is built by taking the transpose of the
top-le� quadrant, and replacing all non-blocking costs by the minimal cost.

Solving LAP. To solve this LAP, we rely on the Munkres & Kuhn algorithm [8], that solves
the problem in polynomial time (O (n3)). The algorithm returns the assignment list that mini-
mizes the sum of their costs.

The frame-to-frame linking described above is repeated first for all frame pairs. This yields
a series of non-branching track segments. A track segment may be start or stop because of a
missing detection, or because of a merge or split event, which is not taken into account at this
stage. A second step where track segments are o�ered to link between each other (and not
only spots) is need, and described further down.

Calculating linking costs. In calculating costs, we deviate slightly from the original paper
from Jaqaman et al. [4]. In the paper, costs depend solely on the spot-to-spot distance, possibly
weighted by the di�erence in spot intensity. Here, we o�er to the user to tune costs by adding
penalties on spot features, as explained below.

The user is asked for a maximal allowed linking distance (entered in physical units), and for
a series of spot features, alongside with penalty weights. These parameters are used to tune
the cost matrices. For two spots that may link, the linking cost is calculated as follow:

• The distance between the two spots D is calculated.
• If the spots are separated by more than the max allowed distance, the link is forbidden,

and the cost is set to∞ (i.e. the blocking value). If not,

• For each feature in the map, a penalty p is calculated as p = 3 ×W × |f1−f2 |f1+f2
whereW is

the factor associated to the feature in the map. This expression is such that:

– there is no penalty if the two feature values f1 and f2 are the same;
– with a factor of 1, the penalty is 1 is one value is the double of the other;
– the penalty is 2 if one is 5 times the other one.

55

• All penalties are summed, to form P = (1 +
∑
p).

• The cost is set to the square of the product: C = (D × P)2

If the user feeds no penalty, the costs are simply the distances squared.

Calculating non-linking costs. The top-right and bo�om-le� quadrant of the frame-to-
frame linking matrix contain costs associated with track segment termination or initiation (a
spot is not linking to a spot in the next or previous frame). Each of these two blocks is a square
matrix with blocking value everywhere, except along the diagonal for which an alternative
cost is computed. Following Jaqaman [4], this cost is set to be

Calt = 1.05 ×max(C)

where C is the costs of the top-le� quadrant.

Cost calculation & Brownian motion. Without penalties and with a maximal linking al-
lowed distance, the returned solution is the one that minimizes the sum of squared distances.
This actually corresponds to the case where the motion of spots is governed by Brownian
motion. See for instance Crocker and Grier [5].

By adding feature penalties, we aim at favoring linking particles that "resemble" each other.
In brute single particle linking problems, spots are generally all the same, and they only di�er
by position. However, there is a variety of problems for which these feature penalties can add
robustness to the tracking process.

For instance, we originally developed TrackMate for semi-automated lineaging of C.elegans
embryos, using a strain fluorescent in the nucleus. Cells that are dividing have a fluorescence
distribution which is very di�erent from non-dividing cells, and this can be exploited for robust
tracking.

Track segment linking. In a second step, the track segments built above are o�ered to link
between each other. Jaqaman and colleagues proposes to exploit again the LAP framework for
this step. A new cost matrix is generated, but this time the following events are considered:

• The end of a track segment is o�ered to link to any other track segment start. This corre-
sponds to gap-closing events, where a link is created typically over two spots separated
by a missed detection.

• The start of a track segment is o�ered to link to the spots in the central part (not start,
not end) of any other track segment. This corresponds to spli�ing events, where a track
branches in two sub-tracks.

• The end of a track segment is o�ered to link to the spots in the central part of any other
track segment. This corresponds to merging events, where two tracks merges into one.

• A spot part of any track segment is o�ered not to create any link.

The second cost matrix has a shape that resembles the first cost matrix, calculated for frame-
to-frame linking, and which is best described in the original article.

56

http://en.wikipedia.org/wiki/Brownian_motion
http://imagej.net/TrackMate

As before, we modified the way costs are calculated, and re-used the feature penalties frame-
work described above. Also, the user must provide on top a maximal time-di�erence to link,
over which linking will be provided. Careful: this maximal time is expressed in physical units
and not in number of frames.

Main di�erences with the Jaqaman paper. The nominal implementation of the paper
remains the one developed under MATLAB by Khuloud Jaqaman et al. [4]. The so�ware is
called u-track and can be found on Khuloud Jaqaman homepage. TrackMate was initially
developed to simplify C.elegans lineaging. It therefore just bundles a stripped down version of
this framework. The notable di�erences are:

• The LAP framework is generic: Jaqaman and colleagues proposed a framework to ap-
proximate multiple-hypothesis tracking solutions using linear assignment problems. One
just need to provide the link cost matrix. TrackMate properly implements the LAP
framework, but the cost matrix calculation - which is specific to each problem - is much
more simpler than in u-track.
For instance, in TrackMate all link costs are based on the square distance between two
spots (weighted or not by feature di�erences, see above), which make it tailored for
Brownian motion. In u-track, the user is proposed with di�erent motion types,
including a linear motion whose parameters are determined on the fly. See for instance
CD36 tracking, in the supplementary note 7 of the Jaqaman paper.

• In u-track, merging and spli�ing of tracks are used to describe two particles that tem-
porally overlap spatially. These events’ costs are weighted by the two particle intensities
to properly catch the apparent increase in intensity due to the overlap. In TrackMate,
we use spli�ing events to describe cell divisions, as we developed it initially to deal with
C.elegans lineages. However is seems than Jaqaman and colleagues used it the same
way to investigate CD36 dissociation and re-association.

• In TrackMate, distance and time cuto�s are specified manually by the user. In u-track
they are derived for each particle automatically, providing self adaptation.

5.3.2 Linear motion tracker.

The linear motion tracker can deal specifically with linear motion, or particle moving with a
roughly constant velocity. This velocity does not need to be the same for all particles. You can
find it in TrackMate tracker selection under the name Linear motion LAP tracker.

Though it deals with a completely di�erent motion model compared to the LAP trackers in
TrackMate, it reuses the Jaqaman LAP framework, and it is similar to a tracker proposed in the
Jaqaman paper as well: See the CD36 tracking, in the supplementary note 7 of the Jaqaman
paper. But again, the version in TrackMate is simplified compared to what you can find in
u-track.

Principle. The linear motion tracker relies on the Kalman filter to predict the most probable
position of a particle undergoing constant velocity movement.

57

http://www.utsouthwestern.edu/labs/jaqaman/software/
http://en.wikipedia.org/wiki/Kalman_filter

Tracks are initiated from the first two frames, using the classical LAP framework with the
Jaqaman cost matrix (see above), using the square distance as cost. The user can set what is
the maximal distance allowed for the initial search with the Initial search radius se�ing.

Each track initiated from a pair of spots is used to create an instance of a Kalman filter.
There are as many Kalman filters as tracks. In the next frames, each Kalman filter is used to
generate a prediction of the most probable position of the particle. All these predictions are
stored.

Then, all the predicted positions are linked against the actual spot positions in the frame,
using again the Jaqaman LAP framework, with the square distance as costs. The user can set
how far can be an actual position from a predicted position for linking with the Search radius

se�ing.

Now of course, a�er linking, some Kalman filters might not get linked to a found spot. This
event is called an occlusion: the predicted position did not correspond to an actual measure-
ment (spot). The good thing with Kalman filters is that they are fine with this, and are still
able to make a prediction for the next frame even with a missing detection. If the number
of successive occlusions is too large, the track is considered terminated. The user can set the
maximal number of successive occlusions allowed before a track is terminated with the Max

frame gap se�ing.
Conversely, some spots might not get linked to a track. They will be used to initiate a new

track in the next frame, as for the tracker initiation described above.
It is important to note here that the cost functions we use is the square distance, like for

the Brownian motion, but from the predicted positions to the actual detections. Because the
prediction positions are made assuming constant velocity, we are indeed dealing with an ade-
quate cost function for linear motion. But since we are linking predicted positions to measured
positions with the square distance cost function, we do as if the predicted positions deviate

58

from actual particle position with an error that follows the gaussian distribution. This is a
reasonable assumption and this is why this tracker will be robust.

Implementation. The code can be found on GitHub. We now repeat the section above in
pseudo-language. When you see the word link below, this means:

• Take all the source detections in frame t and the target detections in frame t + 1.
• Compute the costs for all possible physical assignment (potential links) between source

and target detections and store them in the cost matrix.
• Solve the LAP associated to this matrix.
• Create a link for each assignment found.

The particle linking algorithm would read as follow:

• Initialization:

– Link all the detections of frame 0 to the detections of frame 1, just based on the
square distance costs (for instance).

– From each of them links newly created, compute a velocity. This velocity is enough
to initializem Kalman filters.

– Initialize m tracks with the found detections and links, and store the associated
Kalman filters.

• Track elongation:

– For each Kalman filter, run the prediction step. This will generate m predicted
positions.

– Link the m predicted positions to the n detections in frame 2, based on square
distance.

– Target detection that have been linked to a predicted position are added to the
corresponding track.

– The accepted target detection is used to run the update step of the Kalman filter.
– Loop to next frame.

• Track termination:

– Some of the m predicted position might not find an actual detection to link to.
In that case, we have an occlusion. The algorithm must decide whether it has to
terminate the track or to bridge over a gap.

– If the number of successive occlusions for a Kalman filter is below a certain limit
(typically 2 to 10), the track is not terminated, and the filter goes back to the track
elongation step. Hopefully, from the new prediction a target particle will be found,
and the detection in frame t will be linked to a detection in frame t + 2 (or t + 3
etc).

– Otherwise, the track is terminated and the Kalman filter object is dropped.

59

https://github.com/fiji/TrackMate/blob/master/src/main/java/fiji/plugin/trackmate/tracking/kalman/KalmanTracker.java

• Track initiation:

– Conversely, some detections in frame t + 1 might not be linked to a predicted
position. In this case, these orphan detections are stored to initiate a new track.
But for this, other orphans detections are needed in frame t + 2.

– This step is identical to the initiation step, but for subsequent frames. It requires
to store orphan detections in current and previous frames.

– In frame t+2, priority must be given to detections linked to the predicted positions
by the Kalman filters over orphan detections of frame t + 1. So when you deal
with frame t + 2, you perform first the track elongation step, get a list of orphan
detections in frame t + 2, and then combine it to the orphan detections in frame
t + 1 to initiate new Kalman filters.

6. Particle-linking algorithms accuracy.

The problem with tracking algorithms is that they always give an answer.
This answer can be completely irrelevant, even non-physical, and there is no built-in flags

that would indicate something wrong. The best way to avoid basing your downstream analysis
on faulty tracking results is to know in what situation the tracker works the best, and what
are its limitations. This is the aim of this page for the trackers and detectors shipped with
TrackMate.

6.1 The ISBI 2012 single particle challenge.

In 2011-2012, an ISBI Grand Challenge was organized for the Single-Particle Tracking algo-
rithms. For this challenge, images were numerically simulated to serve as dataset for single-
particle tracking algorithms. Simulations relied on several particle and motion models, used
in turn as ground truth for the quantification of the accuracy of tested algorithms.

We took this challenge with TrackMate, which was in early version 1.1 at the time of the
challenge. The results and the methodology to compute the accuracy of a tracking algorithms
were published [9] therea�er. In its early version, TrackMate scored roughly in the middle
rankings for most scenarios.

6.2 Current TrackMate version accuracy against the ISBI dataset.

Since then TrackMate improved and from version 2.7.x it ships a new tracker that can deal
specifically with linear motion. We can now assess its accuracy again, using the ISBI challenge
data. The people behind Icy maintains the website that hosts the challenge data, and made
it available for download. The section compares the particle-linking accuracy for the 3 classes
of tracking algorithms available in TrackMate:

• The LAP framework derived from Jaqaman et al. [4].
• The linear motion tracker based on Kalman filter.
• The plain Nearest neighbor tracker for reference.

60

http://imagej.net/TrackMate
http://bioimageanalysis.org/track/
http://imagej.net/Icy

6.2.1 Scenarios.

The testing dataset cover four scenarios, that are detailed in the challenge paper [9]. We
survey briefly here what is their particle and motion models they are based on the following
scenarios:

Scenario name Particle shape Motion type
MICROTUBULE Slightly elongated

shape to mimic MT
tip staining.

Roughly constant velocity motion.

RECEPTOR

Spherical.

Tethered motion: switch between
Brownian and directed motion with
random orientation for the later.

VESICLE Brownian motion.
VIRUS Switch between Brownian and directed

motion with fixed orientation for the
later.

For each scenario, images covers several particle density:

• low: 60-100 / frame
• mid: 400-500 / frame
• high: 700-1000 / frame

to check how a tracking algorithm behaves when particles get very dense. Also, particles
SNR spans several values: 1, 2, 4, 7 (plus 3 for the RECEPTOR scenario). As said on the
challenge page: "SNR=4 is a critical level at which methods may start to break down".

6.2.2 Example images from the challenge dataset.

Below are shown typical images taken from the challenge.

Varying particle density. Variation in the particle density, illustrated in the case of the
VESICLE scenario with SNR = 7. Contrast stretched to the 0-150 8-bit range.

Low density Medium density High density

61

http://bioimageanalysis.org/track/

Varying particle SNR. Varying SNR in the RECEPTOR scenario dataset. Contrast stretched
to the 0-50 8-bit range.

SNR = 7 SNR = 4 SNR = 3

SNR = 2 SNR = 1

The MICROTUBULE scenario particle shape. An excerpt from the MICROTUBULE sce-
nario, with SNR = 4, and density = medium. The particles have an elongated shape, to mimic
microtubule tip staining.

6.2.3 Accuracy measurements.

For each scenario and condition, the method returns numerous values that characterizes the
accuracy of a tracking algorithm. They are detailed on this technical paper. We plot below
only three of them:

• The Jaccard similarity between tracks, that quantifies how well the tracks returned
by the algorithm match the ground truth. This value assesses the accuracy of the

62

http://bioimageanalysis.org/track/PerformanceMeasures.pdf

spot tracker you pick in TrackMate. It ranges from 0 (terrible) to 1 (found tracks = ground
truth).

• The Jaccard similarity between detections, that quantifies how well the particle de-
tected by the detection algorithm match the ground truth. It depends strongly on the
spot detector you pick in TrackMate, and ranges from 0 to 1 like the above quantity.

• The RMSE of detection positions that quantifies how precise is the location of the
detected particles. The smaller the be�er.

We fully relied on the Icy so�ware to compute these values. TrackMate ships an action
that exports tracking results to the XML format imposed by the ISBI challenge, which code
can be found here. We generated these files for all the conditions of a scenario, and used the
Icy ISBI challenge scoring plugin to yield metrics. We then used MATLAB to plot them.

6.2.4 Parameter used.

Unless otherwise specified below, we always used the LoG detector as a spot detector, with an
estimated particle diameter of 2, and used sub-pixel accuracy. For SNR below 4, this detector
was completely confused and the detection results are dominated by noise. We did not make
anything special to improve its sensitivity below this limit. When the histogram of detection
quality returned by the detector was not bimodal, we pick a quality threshold that yielded
approximately the expected number of particles in the sequence. The three spot trackers were
configured as indicated in the table below. Finally, for SNR<4, we filtered out tracks that had
less than 4 detections.

Spot tracker Parameter Value

Linear motion tracker
Initial search radius 10
Search radius 7
Max frame gap 3

LAP Brownian motion
Max linking distance 7
Max gap-closing distance 10
Max frame gap 3

Nearest neighbor Max search distance 10

6.2.5 Results.

The results for each scenario is presented and commented below. Since we used the same
detector for all scenarios, all the measures have a common shape for their dependence on
SNR.

Basically, accuracy is the same for SNR ≥ 3. Below SNR = 2 included, the detector is unable
to reliably finds all the particles. For a SNR of 2, it still finds a subset of correct particles,
amongst the brightest. At a SNR of 1, detection results are dominated by spurious detections,
and the particle linking algorithm performance does not ma�er anymore. All are equally bad,
since they track the wrong particles.

63

http://imagej.net/TrackMate_algorithms
http://imagej.net/TrackMate_algorithms
http://imagej.net/Icy
https://github.com/fiji/TrackMate/blob/master/src/main/java/fiji/plugin/trackmate/action/ISBIChallengeExporter.java
http://icy.bioimageanalysis.org/plugin/ISBI_Tracking_Challenge_Batch_Scoring
http://imagej.net/MATLAB

Microtubule scenario. This scenario probes how well the TrackMate algorithms fare against
a roughly constant velocity motion model. Unsurprisingly, the linear motion tracker performs
the best and resists well against high density of particles.

The LAP tracker does not perform well, even in the ideal case, as it expects the average
particle position to be constant at least on short timescales, when it does not. Therefore, it
performance approaches the worst-case scenario given by the nearest-neighbor search algo-
rithm.

The RMSE on particle position is the worst here over the 4 scenarios. This is the obvious
consequence of the particle shape, which is asymmetric and elongated, when the LoG detector
expects bright blobs. Still, this does not a�ect tracking results.

64

1 2 3 4 5 6 7

Tr
ac

ks
 J

ac
ca

rd
 v

al
ue

0

0.2

0.4

0.6

0.8

1

MICROTUBULE scenario
low
mid
high

1 2 3 4 5 6 7

D
et

ec
tio

ns
 J

ac
ca

rd
 v

al
ue

0

0.2

0.4

0.6

0.8

1

SNR
1 2 3 4 5 6 7

D
et

ec
tio

ns
 R

M
S

E

1.2

1.6

2

2.4

 Linear motion tracker
 LAP Brownian motion
 Nearest neighbor

Algorithm: Density:

Receptor scenario. TrackMate does not have a particle linking algorithm that specifically
address this scenario. The motion model switches from Brownian motion to linear motion,
and we have algorithm that deal with one or the other. It is no surprise therefore to find that
they all perform similarly.

Fortunately, accuracy values are rather good and do not break down too much against par-
ticle number. We also see that the linear motion tracker behaves slightly be�er than the rest

65

in all conditions.

1 2 3 4 5 6 7

Tr
ac

ks
 J

ac
ca

rd
 v

al
ue

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7

D
et

ec
tio

ns
 J

ac
ca

rd
 v

al
ue

0

0.2

0.4

0.6

0.8

1

SNR
1 2 3 4 5 6 7

D
et

ec
tio

ns
 R

M
S

E

0

0.4

0.8

1.2

1.6

2

RECEPTOR scenario
low
mid
high

 Linear motion tracker
 LAP Brownian motion
 Nearest neighbor

Algorithm: Density:

Vesicle scenario. The motion model of this scenario is the pure Brownian motion. Unsur-
prisingly the LAP tracker behaves the best as it models precisely this situation. The linear
motion tracker is confused by the constant direction changed generated by the random mo-
tion, and is superseded even by the nearest neighbor search.

66

1 2 3 4 5 6 7

Tr
ac

ks
 J

ac
ca

rd
 v

al
ue

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7

D
et

ec
tio

ns
 J

ac
ca

rd
 v

al
ue

0

0.2

0.4

0.6

0.8

1

SNR
1 2 3 4 5 6 7

D
et

ec
tio

ns
 R

M
S

E

0.2

0.6

1

1.4

1.8

2.2

VESICLE scenario
low
mid
high

 Linear motion tracker
 LAP Brownian motion
 Nearest neighbor

Algorithm: Density:

Virus scenario. As for the receptor scenario, TrackMate does not have a specific tracker
for this scenario. The main di�erence with the receptor scenario is that the linear motion
part of the trajectories are all following the same direction. Again, TrackMate cannot exploit
this bit of information, but it is enough to change what is the be�er performing algorithm
(compared to the receptor scenario). Also, this scenario was the only one to ship 3D data
over time. TrackMate dealt with it without special precaution, thanks to ImgLib2 dimensional
genericity.

67

http://imagej.net/ImgLib2

1 2 3 4 5 6 7

Tr
ac

ks
 J

ac
ca

rd
 v

al
ue

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7

D
et

ec
tio

ns
 J

ac
ca

rd
 v

al
ue

0

0.2

0.4

0.6

0.8

1

SNR
1 2 3 4 5 6 7

D
et

ec
tio

ns
 R

M
S

E

0.4

0.8

1.2

1.6

2

2.4

VIRUS scenario
low
mid
high

 Linear motion tracker
 LAP Brownian motion
 Nearest neighbor

Algorithm: Density:

6.3 Comments.

These results serve as a base to help end-users picking the right algorithm for their problems,
and maybe encourage developers to implement their own. As said before, a deeper interpre-
tation of these metrics in the general case is found in the original paper [9]. Here are a few
things specific to the current version of TrackMate.

The parameters and strategy used for this accuracy assessment are pre�y basic and unelab-

68

orated. This way, results give the ’raw’ accuracy, before a user exploits the deeper specificity
of their problem. The two sections below quickly list what we could have done and could not
have done even if we wanted to improve results.

What was in the challenge that TrackMate did not exploit. We saw that at low SNR,
the detection step dominates and its inability to robustly detect faint particles is the cause for
low scores. Here we did not try to improve the detection results via pre-processing. One could
have denoised the image, or averaged succeeding frames to improve the SNR. Other strategies
rely on a denoising pre-processing step to improve detection accuracy [10].

What is in TrackMate that we could not exploit for the challenge. The LAP trackers
were the first trackers to be shipped with TrackMate. They are a stripped down version of.
They are based solely on square distance costs (Brownian motion), but they can be modulated
by a penalty factor based on numerical features. For instance, the cost to link two particles
can be penalized if their mean intensity is too di�erent.

The challenge data does o�er that possibility: all particles have roughly the same shape
and intensity (modulo some minor variations in SNR). An exception is the MICROTUBULE
scenario, where particles have an elongated shape. Therefore, we could have computed an ori-
entation for them, and penalize two particles with di�erent orientation (assuming - correctly
- that orientation remains roughly the same between two frames).

7. Spot detectors performance.

We report here performance metrics in the shape of execution time for the spot detectors
natively shipped with TrackMate. They serve as a basis for end users to pick an adequate spot
detector when concerned by detection time. We focus on comparing the LoG detector and
DoG detector.

7.1 The test environment.

The computer used for these tests is the following:

Mac-Pro

mi-2010

Processor 2 x 2.66 GHz 6-Core Intel Xeon

Memory 24 GB 1333 MHz DDR3 ECC

Software Mac OS X Lion 10.7.5 (11G63)

For these tests we used Fiji running on Java 1.6. The detectors instantiated were set to use
only 1 thread, not to confuse metrics with concurrent programming issues. Unless indicated,
the median filter and the sub-pixel localization were not used.

69

7.2 Processing time for a 2D image as a function of its size.

For a uint16 image, varying its size, containing 200 gaussian spots of radius 3 (everything is
in pixel units).

N (pixels) Image size DoG detector time (ms) LoG detector time (ms)
256 16 ×16 3.0 4.8

1024 32 ×32 2.95 4.3
4096 64 ×64 3.95 4.35

16384 128 ×128 7.9 5.85
65536 256 ×256 23.35 17.7

262144 512 ×512 88.2 61.15
1048576 1024 ×1024 357.3 251.65
2359296 1536 ×1536 789.85 605.4
4194304 2048 ×2048 1463.4 1201.1

For the DoG detector, unsurprisingly, we find that the execution time is proportional to the
number of pixels, following approximately t (ms) = 3.4 10−4 × Npixels. This is expected as all
calculations are done in direct space.

The LoG detector operates in Fourier space, and because of the Fourier transform imple-
mentation we use, the images are padded with 0s to reach a size equal to a power of 2. This
does not show here as all but one tests are made with such a size. Still, the execution time
slightly deviates from the linear case, and shows a quadratic shape. The best linear fit yields
a low in t (ms) = 2.8 10−4 × Npixels, showing that the LoG detector is slightly quicker than the
DoG detector.

0 1 2 3 4
x 106

0

500

1000

1500

Image size (number of pixels)

Pr
oc

es
si

ng
 ti

m
e

(m
s)

DoG detector
LoG detector

70

7.3 Processing time for a 3D image as a function of its size.

N (pixels) Image size DoG detector time (ms) LoG detector time (ms)
4096 16 ×16 ×16 8.7 24.7

32768 32 ×32 ×32 23.5 38.5
262144 64 ×64 ×64 129.3 159.2

2097152 128 ×128 ×128 875.1 936.3
16777216 256 ×256 ×256 7054.0 7462.4

134217728 512 ×512 ×512 61477.2 58860.6

And again, the processing time is found to be linear with the number of pixels. The linear
fit is slightly steeper, however: t (ms) = 4.6 10−4 × Npixels, which we a�ribute to the 3D kernel
overhead.

Interestingly, the LoG detector seems to become the slowest at intermediate size, which we
a�ribute to overhead in 3D iteration with the ImageJ data model, where Z-slices are stored as
individual arrays, accessed in a list.

0 2 4 6 8 10 12 14
x 107

0

10

20

30

40

50

60

70

Image size (number of pixels)

Pr
oc

es
si

ng
 ti

m
e

(s
)

DoG detector
LoG detector

7.4 Processing time for a 2D image as a function of the spot radius.

We used a 1024x1024 uint16 image, with 200 gaussian spots, the size of which we varied. The
detector was tuned to this radius.

71

0 5 10 15 20 25 30
0

200

400

600

800

1000

Spot radius (pixels)

Pr
oc

es
si

ng
 ti

m
e

(m
s)

DoG detector
LoG detector

We find that for the DoG detector, the processing time to increase linearly with the specified
radius, following approximately t (ms) = 20.5 × radius + 260. As the di�erence-of-gaussians is
calculated in the direct space, a marked increase is expected as there is more pixels to iterate
over. Without optimization, we should however have found the time to be increasing with the
square of the radius, and find the same dependence that for the image size. Thanks to the
clever implementation of gaussian filtering1, this is avoided.

The LoG detector shows a near-constant processing time, which makes it desirable for spots
larger than 2 pixels in radius. This is due to the way we compute the convolution which is
explained below.

7.5 Processing time for a 3D image as a function of the spot radius.

This time we used a 256x256x256 3D image, but with otherwise the same parameters.

1Gauss3 code

72

https://github.com/imagej/imglib/blob/master/algorithms/core/src/main/java/net/imglib2/algorithm/gauss3/Gauss3.java

0 5 10 15 20 25 30
5

10

15

20

25

30

35

Spot radius (pixels)

Pr
oc

es
si

ng
 ti

m
e

(s
)

DoG detector
LoG detector

The processing time increases, but this time deviates slightly from linearity in the DoG case.
We retrieve the 3D kernel overhead we had for the 3D images.

The LoG performance clearly highlights the 0-padding used because of the Fourier trans-
form: Indeed, the processing time increase in a step-wise manner. We use the Fourier trans-
form to compute the convolution by the LoG kernel. But for the implementation we use, the
kernel image (and the source image as well) are padded by 0 until their size reaches a power
of 2 (128, 256, 512, etc). Whenever the required kernel size is smaller than this power of 2, its
size is increased to this value. Because ultimately the processing time depends on the number
of pixels, we see a constant processing time until the kernel size imposes a larger power of 2.

7.6 Choosing between DoG and LoG based on performance.

This stepwise evolution makes it slightly harder to choose between LoG and DoG detectors
based on performance. As a crude rule of thumb we will remember that

• The LoG detector outperforms the DoG detector in 2D for radiuses larger than 2 pixels.
• The LoG detector outperforms the DoG detector in 3D for radiuses larger than 4 pixels.

73

Part III.
Interoperability.
8. Importing and analyzing TrackMate data in MATLAB.

We document here the functions shipped with Fiji that allows for importing TrackMate data in
MATLAB. These functions use amongst other things the MATLAB classes table and digraph,
introduced respectively with versions R2013b and R2015b, so a recent version of MATLAB
is required to use them. Also, end-users should have some notions of MATLAB and basic
understanding of mathematical graphs to take full advantage of this documentation.

For most tracking applications, importing tracking results is easy, as long as the tracks
are linear tracks. If the tracks do not have split or merge events, then single tracks can be
represented by a linear array, for instance containing the particle positions or indices. Things
are much more complicated when a track can divide in two or more components, or inversely
merge with another track. A track cannot be represented anymore by linear arrays. This is the
case for TrackMate, as its data model permits split and merge events.

Here we document the various ways of importing TrackMate data in MATLAB, how to deal
with complex tracks and show examples of basic analysis and visualization of tracks in MAT-
LAB.

8.1 Installation of TrackMate functions for MATLAB.

The Fiji application ships up to date MATLAB functions that - amongst other things - deal
with TrackMate import. They are contained in the scripts folder of the Fiji.app installation:

ls ~/Applications/Fiji.app/scripts

We are interested in the five trackmate*.m and importTrackMateTracks.m functions. To make
them available in your MATLAB sessions, you need to add the scripts folder to your MATLAB
path. To do so, open the MATLAB path editor, and add the scripts folder to it. The way to do
it is best explained on the MATLAB documentation website.

Now check that the new functions are available from MATLAB:

>> which trackmateGraph

/Users/tinevez/Development/Matlab/functions/jy/...

trackmate/trackmateGraph.m

8.2 The simple case of linear tracks.

In the case where your application only uses for linear tracks, you don’t need to deal with the
aforementioned complexity and can rely on a simple array data structure.

TrackMate has an action that exports data to a simplified XML file containing the track. For
in the action menu and look for the action called Export tracks to XML file. This action will
create a XML file with a simple nomenclature, that resembles this:

74

http://mathworks.com/help/matlab/matlab_env/add-remove-or-reorder-folders-on-the-search-path.html

<?xml version="1.0" encoding="UTF-8"?>

<Tracks nTracks="1959" spaceUnits="pixels" frameInterval="1.0"

timeUnits="frames" generationDateTime="Wed, 22 Jun 2016 16:33:25"

from="TrackMate v3.3.0">

<particle nSpots="10">

<detection t="0" x="1710.2" y="1015.7" z="1613.8" />

<detection t="1" x="1711.7" y="1017.4" z="1607.9" />

<detection t="2" x="1708.3" y="1015.6" z="1610.0" />

<detection t="3" x="1707.4" y="1012.3" z="1614.9" />

...

Tracks are organized as <particle> element, and in each element, with T, X, Y and Z listed
with their physical value.

This simple file format emerged from the ISBI Grand Challenge on single-particle tracking.
It is here to allow end-users to write simple import filters for other languages. But it is limited
to linear tracks. Running the Export tracks to XML file action on data wither split and merge
events will silently fail and generate a XML file that will generate errors later.

Importing such a file in MATLAB is done via the importTrackMateTracks function:

>> file_path_tracks = ’Video_1_Tracks.xml’;

>> tracks = importTrackMateTracks(file_path_tracks);

>> n_tracks = numel(tracks);

>> fprintf(’Found %d tracks in the file.\n’, n_tracks)

Found 55 tracks in the file.

In MATLAB the tracks are stored in a cell array of matrices.

>> tracks(1)

ans =

[48x4 double]

Each track is a N × 4 matrix of double, one line per detection. On a single line, the spot data
is arranged as [T X Y Z]:

>> tracks{1}(5, :)

ans =

4.0000 80.7978 76.6681 0

By default, time is reported in frame number, so it is an integer. Also, spots have always a Z
coordinate, even if the tracking was made in 2D. The function importTrackMateTracks has two
switches to change this behavior. For instance:

75

http://bioimageanalysis.org/track/

>> clipZ = true; % Remove Z coordinates, if you know you can.

>> scaleT = true; % Use physical time for T.

>> tracks = importTrackMateTracks(file_path_tracks, clipZ, scaleT);

>> tracks{1}(5, :)

ans =

0.2400 80.7978 76.6681

The data file we used for this section has a physical frame interval, so now T is in seconds.
And since we clipped the Z coordinate, the tracks are made of N × 3 matrices now.

The metadata is stored in the file, and can be accessed as a secondary output of the import-

TrackMateTracks function.

>> [tracks, md] = importTrackMateTracks(file_path_tracks, ...

clipZ, scaleT);

>> md

md =

spaceUnits: ’µm’

timeUnits: ’sec’

frameInterval: 0.0600

date: ’Wed, 22 Jun 2016 16:55:20’

source: ’TrackMate v3.3.0’

The data we used for this section came for the tracking of Helicobacter pylori, a pathogenic
bacteria responsible for ulcers amongst other things. Their movement resembles this:

>> figure

>> hold on

>> c = jet(n_tracks);

>> for s = 1 : n_tracks

>> x = tracks{s}(:, 2);

>> y = tracks{s}(:, 3);

>> plot(x, y, ’.-’, ’Color’, c(s, :))

>> end

>> axis equal

>> xlabel([’X (’ md.spaceUnits ’)’])

>> ylabel([’Y (’ md.spaceUnits ’)’])

76

0 50 100 150 200 250 300 350

X (µm)

0

50

100

150

200

250

300

Y
 (

µ
m

)

8.3 Importing the spot feature table.

There are many limitations with the later approach. The first one being its inability to cope
with complex tracks, as we said earlier. The second one being that we did not import the spot
features (mean intensity, radius, etc) other than their position. To do so we have to move to
more complex functions that directly interact with TrackMate data files.

The XML files are the ones in which TrackMate saves its tracking session, when you press
the Save bu�on on the GUI. Their first lines resemble this:

<?xml version="1.0" encoding="UTF-8"?>

<TrackMate version="3.3.0">

...

They are made of several XML elements, the most important one being the Model:

<Model spatialunits="pixel" timeunits="sec">

The example file we use here comes from the lineage of a C.elegans embryo over the first 3
hours of development post first anaphase. It is made of four tracks: two for the polar bodies
(PB1 and PB2), one for the AB lineage and one for the P1 lineage. The AB and P1 lineages take
the shape of two tracks. In these tracks there are several cell divisions (5 for the AB lineage)
so they are not linear and the approach of the previous section will fail.

>> % C.elegans lineage TrackMate data file.

>> file_path = ’10-03-17-3hours.xml’;

The function trackmateSpots will import the visible spots of this file as a MATLAB table.
The table class is somewhat recent in MATLAB, so you need at least MATLAB v2013b to have
this function working.

The function basic syntax is the following:

>> [spot_table, spot_ID_map] = trackmateSpots(file_path);

77

We will speak about the second output argument spot_ID_map later. We retrieve it now, for
the functions that load a TrackMate file in MATLAB can take quite some time to run, so you
want to run them only once.

There is another optional input argument we did not speak about here. You can pass as
a second argument a cell array of strings containing the names of the features you want to
import. If this list is empty or if the second argument is not present, all spot features are
retrieved. Read the help of the trackmateSpots to learn more about its full syntax.

The table returned contains all the spot features by default, and spots are listed by frame
order:

>> spot_table(1 : 6, { ’ID’, ’name’, ’FRAME’ })

ans =

ID name FRAME
_____ _____ _____

0 ’AB’ 0

1 ’PB1’ 0

2 ’P1’ 0

3 ’PB2’ 0

47360 ’PB1’ 1

47361 ’PB2’ 1

It is best to read the table documentation to take full advantage of it. Nonetheless, here is
a few things we can do with it. The lineage was created with TrackMate, and the spot features
we measured are imported with name and units:

>> % List a subset of features, there are 32 of them.

>> feature_subset = [1, 2, 13, 17, 22, 23, 24];

>>

>> [spot_table.Properties.VariableNames(feature_subset)

>> spot_table.Properties.VariableDescriptions(feature_subset)

>> spot_table.Properties.VariableUnits(feature_subset)]

ans =

Columns 1 through 3

’ID’ ’name’ ’ESTIMATED_DIAMETER’

’Spot ID’ ’Spot name’ ’Estimated diameter’

’’ ’’ ’µm’

Columns 4 through 7

’MEAN_INTENSITY’ ’POSITION_X’ ’POSITION_Y’ ’POSITION_Z’

’Mean intensity’ ’X’ ’Y’ ’Z’

’Counts’ ’µm’ ’µm’ ’µm’

78

Values can be accessed directly with the feature name:

>> t = spot_table.FRAME;

>> t(10:16)

ans =

2

2

2

3

3

3

3

Values can then be used to slice through the table:

% All spots in frame 10:

>> index = (t == 10);

>> spot_table(index, feature_subset)

ans =

ID name ESTIMATED_DIAMETER MEAN_INTENSITY
_____ ______ __________________ ______________

51336 ’P2’ 5.5835 1943.2

51337 ’AB.a’ 6.9765 1374

51339 ’EMS’ 5.0021 1223.4

51340 ’AB.p’ 7.1779 1183.3

51334 ’PB1’ 2.482 1949.4

51335 ’PB2’ 4.4596 1729.9

POSITION_X POSITION_Y POSITION_Z
__________ __________ __________

55.868 36.022 18

18.094 15.977 19

42.042 24.312 19

31.325 37.146 22

10.353 9.9564 16

25.437 23.386 15

You can redisplay the spot cloud in MATLAB:

>> x = spot_table.POSITION_X;

>> y = spot_table.POSITION_Y;

>> z = spot_table.POSITION_Z;

>>

>> figure

79

>> plot3(x, y, z, ’k.’)

>> axis equal

>> units = char(spot_table.Properties.VariableUnits(22));

>> xlabel([’X (’ units ’)’])

>> ylabel([’Y (’ units ’)’])

>> zlabel([’Z (’ units ’)’])

10

15

40

20

50

25

Z
 (

µ
m

)

30

30 40

X (µm)Y (µm)

3020

20
10

10

Notice that there is no time information on this plot, nor track information. We just imported
the spots so far, and there is not yet data on how spots are linked.

8.4 Importing the edge track table.

Edges - or links - are what assemble these spots in tracks. Each edge represents a link from
a spot (the source spot) to another (the target spot). In TrackMate, edges are directed and
oriented towards time: the target has spot always a FRAME value strictly larger than the
source spot. Beyond this, there is no restrictions. A spot can be the source or target of many
links or none.

Edges have features too. These are values that make sense only for links, such as velocity.
The edge features are imported using a function similar to the one for spots:

>> edge_map = trackmateEdges(file_path);

However here the data is not directly returned as a table but as a map of table, one for each
track:

>> % What is the output class?

>> class(edge_map)

ans =

containers.Map

>> % The track names are used as keys in the map:

>> track_names = edge_map.keys

80

track_names =

’AB’ ’P1’ ’PB1’ ’PB2’

>> % How many tracks?

>> n_tracks = numel(track_names)

n_tracks =

4

The values of the map are edge feature tables:

>> ab_edges = edge_map(’AB’);

>> class(ab_edges)

>> ab_edges(1:6, 1:5)

ans =

table

ans =

SPOT_SOURCE_ID SPOT_TARGET_ID DISPLACEMENT
______________ ______________ ____________

3.8376e+05 3.8381e+05 3.5395

3.8534e+05 3.8543e+05 0.7715

2.2182e+05 2.0921e+05 1.3444

3.5751e+05 3.5323e+05 1.0961

2.1763e+05 2.2603e+05 0.49616

2.6826e+05 2.9371e+05 0.3138

EDGE_TIME EDGE_X_LOCATION
_________ _______________

119 23.568

143 32.317

109 13.347

167 34.781

105 38.949

121 22.476

Feature names and units are imported too:

>> [ab_edges.Properties.VariableNames

>> ab_edges.Properties.VariableDescriptions

>> ab_edges.Properties.VariableUnits]

81

ans =

Columns 1 through 3

’SPOT_SOURCE_ID’ ’SPOT_TARGET_ID’ ’DISPLACEMENT’

’Source spot ID’ ’Target spot ID’ ’Displacement’

’no unit’ ’no unit’ ’µm’

Columns 4 through 6

’EDGE_TIME’ ’EDGE_X_LOCATION’ ’EDGE_Y_LOCATION’

’Time (mean)’ ’X Location (mean)’ ’Y Location (mean)’

’min’ ’µm’ ’µm’

Columns 7 through 9

’EDGE_Z_LOCATION’ ’LINK_COST’ ’VELOCITY’

’Z Location (mean)’ ’Link cost’ ’Velocity’

’µm’ ’no unit’ ’µm/min’

The trackmateEdges has a similar syntax to the trackmateSpots function for optional input
arguments. It is detailed in its help section. There are two key features in these edge tables: the
SPOT_SOURCE_ID and the SPOT_TARGET_ID. They are the ones with which we can rebuild tracks
in TrackMate:

>> track_spot_IDs = cell(n_tracks, 1);

>> for s = 1 : n_tracks

>>

>> track_name = track_names{s};

>> edge_table = edge_map(track_name);

>> track_spot_IDs{ s } = unique([

>> edge_table.SPOT_SOURCE_ID

>> edge_table.SPOT_TARGET_ID

>>]);

>>

>> end

We now have the IDs of the spots that are in specified tracks. The problem is that these IDs
are spot IDs, and we have a spot table in which the table row does not match the spot ID. This
is where the second output argument of the trackmateSpots function is useful. spot_ID_map is
a map that links spot IDs to row number in the spot table. It is used as follow:

>> % Retrieve the spot with ID:

>> spot_ID = 3087;

>> r = spot_ID_map(spot_ID)

r =

12

82

>> spot_table(r, feature_subset)

ans =

ID name ESTIMATED_DIAMETER MEAN_INTENSITY
____ ____ __________________ ______________

3087 ’AB’ 6.5642 1187.2

POSITION_X POSITION_Y POSITION_Z
__________ __________ __________

30.266 28.282 19

We can use it to retrieve the position of the spots in each track:

>> figure

>> hold on

>> for s = 1 : n_tracks

>>

>> track_name = track_names{ s};

>> track_spot_ID = track_spot_IDs{ s };

>>

>> % To extract several values all at once, we have to play

>> % with cell arrays and the value map method:

>> rows = cell2mat(spot_ID_map.values(num2cell(track_spot_ID)));

>>

>> x = spot_table.POSITION_X(rows);

>> y = spot_table.POSITION_Y(rows);

>> z = spot_table.POSITION_Z(rows);

>>

>> % Plot the tracks by coloring spots.

>> plot3(x, y, z, ’.’, ’DisplayName’, track_name)

>>

>> end

>>

>> xlabel([’X (’ units ’)’])

>> ylabel([’Y (’ units ’)’])

>> zlabel([’Z (’ units ’)’])

>> view(-15, 30)

>> axis equal

>> legend toggle

83

10

15

20

40

25

Z
 (

µ
m

)

30

30

Y (µm)

20

50

X (µm)

4010
30

20
10

AB

P1

PB1

PB2

8.5 Importing TrackMate data as a MATLAB graph.

We are still missing one piece of information on the latest plot, which is the connectivity
between spot. We can retrieve it from the edges we imported in the previous section, and
accessing the SPOT_SOURCE_ID and the SPOT_TARGET_ID features. A be�er solution is to directly
import the whole data as a MATLAB graph.

The graph is the ultimate solution to represent complex tracks, manipulate and inspect them
for finer analysis. A mathematical graph is a data structure made of vertices (in our case, spots)
connected by edges (in our case links between spots). Graphs have numerous uses, which
fostered the advent of graph theory and its applications. With a graph data structure, you get
the tools to iterate, partition, edit and investigate the data like you could never do with linear
data structures.

MATLAB o�ers two main graph classes, one for undirected graphs (the direction of edges
do not ma�er) and directed graphs (edges are directed). We rely of course on the later, which
is named digraph. It was introduced in MATLAB R2015b, so you need at least this version for
what follows.

The function trackmateGraph imports the whole TrackMate data as a MATLAB digraph.
Doing so, spot and edge features are imported as well, so this function can replace the two
preceding ones. It o�ers optional arguments to import a subset of features, as for trackmate-
Spots and trackmateEdges, plus an extra optinal flag for verbosity. They are all documented in
the help section of the function.

>> % Import all features and be verbose during import.

>> G = trackmateGraph(file_path, [], [], true);

Importing spot table. Done in 20.6 s.

Importing edge table. Done in 6.3 s.

Building graph. Done in 0.2 s.

The graph structure stores the spots and links features in tables:

>> % Spots.

>> G.Nodes(1:5, feature_subset)

84

ans =

ID name ESTIMATED_DIAMETER MEAN_INTENSITY
_____ _____ __________________ ______________

0 ’AB’ 4.5477 1129.4

1 ’PB1’ 6.3325 2418.9

2 ’P1’ 2.7192 1142.6

3 ’PB2’ 4.5137 671.54

47360 ’PB1’ 4.5293 757.12

POSITION_X POSITION_Y POSITION_Z
__________ __________ __________

34.136 30.564 21

10.221 11.61 16

43.266 32.549 20

9.9233 27.587 22

10.32 11.511 16

>> % Edges.

>> G.Edges(1:6, 1:5)

ans =

EndNodes SPOT_SOURCE_ID SPOT_TARGET_ID
________ ______________ ______________

1 8 0 47363

2 5 1 47360

3 7 2 47362

4 6 3 47361

5 9 47360 3084

6 10 47361 3085

DISPLACEMENT EDGE_TIME
____________ _________

2.2946 1

0.14034 1

2.8798 1

18.875 1

0.19847 3

6.8934 3

These tables have the same shape that the tables imported by trackmateSpots and trackma-

teEdges, except for the edge table, whose first column EndNodes is a N × 2 array that stores the
source and target indices of nodes in the spot table. Careful: these indices are row numbers
in the spot table.

85

>> % Access one edge:

>> i_edge = 28; % 28th edge from AB to AB.p

>> edge = G.Edges(i_edge, 1:5);

>> source = G.Nodes(edge.EndNodes(1), feature_subset)

source =

ID name ESTIMATED_DIAMETER MEAN_INTENSITY
_____ ____ __________________ ______________

27303 ’AB’ 4.7838 1457.9

POSITION_X POSITION_Y POSITION_Z
__________ __________ __________

26.396 25.801 21

>> target = G.Nodes(edge.EndNodes(2), feature_subset)

target =

ID name ESTIMATED_DIAMETER MEAN_INTENSITY
_____ ______ __________________ ______________

31404 ’AB.p’ 4.5622 834.89

POSITION_X POSITION_Y POSITION_Z
__________ __________ __________

27.488 29.737 23

We can now rely on MATLAB facilities to lay out the graph. For instance you can create a
graph display that resembles TrackScheme using the layered option of the the plot function,
and se�ing the nodes Y coordinates to the spot frame:

>> figure

>> hp = plot(G, ’layout’, ’layered’);

>> set(hp, ’YData’, G.Nodes.FRAME);

>> set(gca, ’YDir’, ’reverse’, ’XColor’, ’none’)

>> ylabel(’Time point’)

>> box off

86

-20

0

20

40

60

80

100

T
im

e
 p

o
in

t

As said above, there is a rich collection of tools o�ered to manipulate a graph. Here is a few
examples. For instance, suppose we want to color on this graph all the descendant of the MS
cell.

>> % Find the first occurrence of MS using spot names.

>> index_MS = find(strcmp(G.Nodes.name, ’MS’), 1);

>>

>> % Use depth first iterator to have all its descendant. This will

>> % work since our graph is a directed graph. The following

>> % instruction generates a table with nodes indices (when they are

>> % met for the first time) and edge indices (when they are

>> % traversed).

>> t = dfsearch(G, index_MS, { ’discovernode’, ’edgetonew’ });

>>

>> % We have to prune NaNs if we want a separate list of nodes and

>> % edges.

>> v = t.Node;

>> v = v(~isnan(v));

>> e = t.Edge;

>> e = e(~isnan(e(:,1)), :);

>>

>> % Highlight them in the plot:

>> % Nodes

>> col1 = [0.8 0.2 0.1];

>> highlight(hp, v, ’NodeColor’, col1)

>> % Edges

>> highlight(hp, e(:,1), e(:,2), ’EdgeColor’, col1)

87

-20

0

20

40

60

80

100

T
im

e
 p

o
in

t

Now let’s find a path in the graph, from AB to AB.araappp

>> index_AB1 = find(strcmp(G.Nodes.name, ’AB’), 1);

>> index_AB2 = find(strcmp(G.Nodes.name, ’AB.araappp’), 1);

>>

>> path_AB = shortestpath(G, index_AB1, index_AB2);

>> col2 = [0.1 0.5 0.2];

>> % The highlight function can color edges of a path automatically.

>> highlight(hp, path_AB, ’NodeColor’, col2, ’EdgeColor’, col2)

-20

0

20

40

60

80

100

T
im

e
 p

o
in

t

We can also layout the graph using the spot coordinates for the nodes in the plot. Unfor-
tunately, the plot function of MATLAB allows for specifying on the X and Y coordinates. If
we want to reproduce the tracks in 3D with cell fate, we have to generate our own plo�ing
function. Here is a procedure adapted from the work of John Gilbert:

>> % Get X, Y, Z coordinates.

>> x = G.Nodes.POSITION_X;

>> y = G.Nodes.POSITION_Y;

>> z = G.Nodes.POSITION_Z;

>>

88

>> % Get links source and target.

>> s = G.Edges.EndNodes(: , 1);

>> t = G.Edges.EndNodes(: , 2);

>>

>> % We intercalate NaNs between node pairs to have a line for

>> % each edge.

>> n_nodes = numel(s);

>> X = [x(s) x(t) NaN(n_nodes, 1)]’;

>> Y = [y(s) y(t) NaN(n_nodes, 1)]’;

>> Z = [z(s) z(t) NaN(n_nodes, 1)]’;

>> X = X(:);

>> Y = Y(:);

>> Z = Z(:);

>>

>> figure

>> plot3(X, Y, Z, ’-’, ’Color’, [0.5 0.5 0.5])

>> xlabel([’X (’ units ’)’])

>> ylabel([’Y (’ units ’)’])

>> zlabel([’Z (’ units ’)’])

>> view(-150, 30)

>> axis equal

5

1010

15

15

20

50 20

Z
 (

µ
m

) 25

Y (µm)

30

2540

X (µm)

3030
35

20
40

10

We can also reuse the edges of the MS descendant calculated above to repaint these de-
scendants in another color on this 3D plot:

>> % The variable e stores MS descendants edges.

>> s = e(:,1);

>> t = e(:,2);

>>

>> % Same procedure otherwise:

>> n_nodes = numel(s);

>> Xms = [x(s) x(t) NaN(n_nodes, 1)]’;

>> Yms = [y(s) y(t) NaN(n_nodes, 1)]’;

>> Zms = [z(s) z(t) NaN(n_nodes, 1)]’;

>> Xms = Xms(:);

>> Yms = Yms(:);

>> Zms = Zms(:);

>>

89

>> hold on

>> plot3(Xms, Yms, Zms, ’-’, ’Color’, col1, ’LineWidth’, 2)

5

1010

15

15

20

50 20

Z
 (

µ
m

) 25

Y (µm)

30

2540

X (µm)

3030
35

20
40

10

Now if we want to color a path, we have to access the edges of this path, which we cannot
do with the simple shortestpath function. We have to rely on shortestpathtree, which returns
a digraph with the relevant edges only:

>> path_AB2 = shortestpathtree(G, index_AB1, index_AB2);

>>

>> % We get edges from the created digraph:

>> s = path_AB2.Edges.EndNodes(:,1);

>> t = path_AB2.Edges.EndNodes(:,2);

>>

>> % Same procedure otherwise:

>> n_nodes = numel(s);

>> Xab = [x(s) x(t) NaN(n_nodes, 1)]’;

>> Yab = [y(s) y(t) NaN(n_nodes, 1)]’;

>> Zab = [z(s) z(t) NaN(n_nodes, 1)]’;

>> Xab = Xab(:);

>> Yab = Yab(:);

>> Zab = Zab(:);

>>

>> hold on

>> plot3(Xab, Yab, Zab, ’o-’, ’Color’, col2, ’LineWidth’, 2, ...

>> ’MarkerFaceColor’, ’w’)

5

1010

15

15

20

50 20

Z
 (

µ
m

) 25

Y (µm)

30

2540

X (µm)

3030
35

20
40

10

90

8.6 Other MATLAB functions for TrackMate.

The three sections above presented the core of interoperability between TrackMate and MAT-
LAB. The main function is trackmateGraph but trackmateSpots and trackmateEdges can be used
advantageously when the whole graph is not required for analysis. The logic used in these
three functions can be reproduced and translated to languages other than MATLAB.

There are two supplemental functions that do not import the track data but are useful to
probe the metadata stored in a TrackMate file. trackmateImageCalibration is able to read the
physical calibration of the image on which TrackMate operated:

>> cal = trackmateImageCalibration(file_path);

>> cal.x

ans =

start: 0

end: 348

size: 349

value: 0.1985

units: ’µm’

The function trackmateFeatureDeclarations is used to probe what features are declared in
the TrackMate file:

>> [spot_fd, edge_fd, track_df] = ...

>> trackmateFeatureDeclarations(file_path);

They are returned as 3 maps, one for spot, edge and track feature declarations. These maps
use the feature names as keys:

>> edge_fd(’VELOCITY’)

ans =

key: ’VELOCITY’

name: ’Velocity’

shortName: ’V’

dimension: ’VELOCITY’

isInt: 0

units: ’µm/min’

8.7 Application examples and links.

There are some specialized tools in MATLAB that can exploit TrackMate results. For in-
stance, here is a MATLAB class that performs analysis. It is hopefully well documented in
this MATLAB tutorial.

91

http://www.mathworks.com/matlabcentral/fileexchange/40692-mean-square-displacement-analysis-of-particles-trajectories mean-square displacement
http://www.mathworks.com/matlabcentral/fileexchange/40692-mean-square-displacement-analysis-of-particles-trajectories/content/msdanalyzer/MSDTuto.html

9. Scripting TrackMate in Python.

TrackMate can be used out of the GUI, using a scripting language that allows making calls to
Java. The most simple way to get started is to use the Script Editor of Fiji, which takes care
of the di�icult and boring part for you (such as path). The examples proposed on this page all
use Jython, but can be adapted to anything.

Since we are calling the internals of TrackMate, we must get to know a bit of its internal
design. There are three main classes to interact with in a script:

• Model (fiji.plugin.trackmate.Model) is the class in charge of storing the data It cannot
do anything to create it. It can help you follow manual modifications you would made
in the manual editing mode, interrogate it, ... but it is conceptually just a data recipient.

• Se�ings (fiji.plugin.trackmate.Settings) is the class storing the fields that will con-
figure TrackMate and pilot how the data is created. This is where you specify what is
the source image, what are the detector and tracking algorithms to use, what are the
filters to use, etc.

• TrackMate (fiji.plugin.trackmate.TrackMate) is the class that does the actual work. In
scripts, we use it to actually perform the analysis tasks, such as generating spots from
images, linking them into track, etc. It reads configuration information in the Se�ings
object mentioned above and put the resulting data in the model.

So ge�ing a working script is all about configuring a proper Settings object and calling
exec* methods on a TrackMate object. Then we read the results in the Model object.

9.1 A full example.

Here is an example of full tracking process, using the easy image found in the first tutorial.
The following (Jython) script works as following:

• It fetches the image from the web.
• It configures se�ings for segmentation and tracking.
• The model is instantiated, with the se�ings and imp objects.
• The TrackMate class is instantiated with the model object.
• Then the TrackMate object performs all the steps needed.
• The final results is displayed as an overlay.

from fiji.plugin.trackmate import Model

from fiji.plugin.trackmate import Settings

from fiji.plugin.trackmate import TrackMate

from fiji.plugin.trackmate import SelectionModel

from fiji.plugin.trackmate import Logger

from fiji.plugin.trackmate.detection import LogDetectorFactory

from fiji.plugin.trackmate.tracking.sparselap import SparseLAPTrackerFactory

from fiji.plugin.trackmate.tracking import LAPUtils

92

http://imagej.net/TrackMate
http://imagej.net/Script Editor
http://fiji.sc/javadoc/fiji/plugin/trackmate/Model.html
http://fiji.sc/javadoc/fiji/plugin/trackmate/Settings.html
http://fiji.sc/javadoc/fiji/plugin/trackmate/TrackMate.html
http://imagej.net/Getting started with TrackMate

from ij import IJ, WindowManager

import fiji.plugin.trackmate.visualization.hyperstack.HyperStackDisplayer as

↪→ HyperStackDisplayer

import fiji.plugin.trackmate.features.FeatureFilter as FeatureFilter

import sys

import fiji.plugin.trackmate.features.track.TrackDurationAnalyzer as TrackDurationAnalyzer

Get currently selected image

#imp = WindowManager.getCurrentImage()

imp = IJ.openImage(’http://fiji.sc/samples/FakeTracks.tif’)

imp.show()

#----------------------------

Create the model object now

#----------------------------

Some of the parameters we configure below need to have

a reference to the model at creation. So we create an

empty model now.

model = Model()

Send all messages to ImageJ log window.

model.setLogger(Logger.IJ_LOGGER)

#------------------------

Prepare settings object

#------------------------

settings = Settings()

settings.setFrom(imp)

Configure detector - We use the Strings for the keys

settings.detectorFactory = LogDetectorFactory()

settings.detectorSettings = {

’DO_SUBPIXEL_LOCALIZATION’ : True,

’RADIUS’ : 2.5,

’TARGET_CHANNEL’ : 1,

’THRESHOLD’ : 0.,

’DO_MEDIAN_FILTERING’ : False,

}

Configure spot filters - Classical filter on quality

filter1 = FeatureFilter(’QUALITY’, 30, True)

settings.addSpotFilter(filter1)

93

Configure tracker - We want to allow merges and fusions

settings.trackerFactory = SparseLAPTrackerFactory()

settings.trackerSettings = LAPUtils.getDefaultLAPSettingsMap()

almost good enough

settings.trackerSettings[’ALLOW_TRACK_SPLITTING’] = True

settings.trackerSettings[’ALLOW_TRACK_MERGING’] = True

Configure track analyzers - Later on we want to filter out tracks

based on their displacement, so we need to state that we want

track displacement to be calculated. By default, out of the GUI,

not features are calculated.

The displacement feature is provided by the TrackDurationAnalyzer.

settings.addTrackAnalyzer(TrackDurationAnalyzer())

Configure track filters - We want to get rid of the two immobile

spots at the bottom right of the image. Track displacement must

be above 10 pixels.

filter2 = FeatureFilter(’TRACK_DISPLACEMENT’, 10, True)

settings.addTrackFilter(filter2)

#-------------------

Instantiate plugin

#-------------------

trackmate = TrackMate(model, settings)

#--------

Process

#--------

ok = trackmate.checkInput()

if not ok:

sys.exit(str(trackmate.getErrorMessage()))

ok = trackmate.process()

if not ok:

sys.exit(str(trackmate.getErrorMessage()))

#----------------

Display results

#----------------

selectionModel = SelectionModel(model)

displayer = HyperStackDisplayer(model, selectionModel, imp)

94

displayer.render()

displayer.refresh()

Echo results with the logger we set at start:

model.getLogger().log(str(model))

The results should look like this:

And the ImageJ log window should display information resembling this:

Starting detection process using 4 threads.

Detection processes 4 frames simultaneously and allocates 1 thread per frame.

Found 22883 spots.

Starting initial filtering process.

Computing spot features.

Computation done in 11 ms.

Starting spot filtering process.

Starting tracking process.

Computing track features:

- Track duration in 2 ms.

Computation done in 17 ms.

...

9.2 Loading and reading from a saved TrackMate XML file.

Scripting is a good way to interrogate and play non-interactively with tracking results. The
example below shows how to load a XML TrackMate file and rebuild a full working model from
it. That way you could for instance redo a full tracking process by only changing one parameter
with respect to the saved one. You might also want to check results without relying on the
GUI, etc.

For the example below to work for you, you will have to edit line 20 and put the actual path
to your TrackMate file.

from fiji.plugin.trackmate.visualization.hyperstack import HyperStackDisplayer

from fiji.plugin.trackmate.io import TmXmlReader

from fiji.plugin.trackmate import Logger

from fiji.plugin.trackmate import Settings

from fiji.plugin.trackmate import SelectionModel

from fiji.plugin.trackmate.providers import DetectorProvider

from fiji.plugin.trackmate.providers import TrackerProvider

from fiji.plugin.trackmate.providers import SpotAnalyzerProvider

from fiji.plugin.trackmate.providers import EdgeAnalyzerProvider

from fiji.plugin.trackmate.providers import TrackAnalyzerProvider

from java.io import File

import sys

95

#----------------

Setup variables

#----------------

Put here the path to the TrackMate file you want to load

file = File(’/Users/tinevez/Desktop/Data/FakeTracks.xml’)

We have to feed a logger to the reader.

logger = Logger.IJ_LOGGER

#-------------------

Instantiate reader

#-------------------

reader = TmXmlReader(file)

if not reader.isReadingOk():

sys.exit(reader.getErrorMessage())

#-----------------

Get a full model

#-----------------

This will return a fully working model, with everything

stored in the file. Missing fields (e.g. tracks) will be

null or None in python

model = reader.getModel()

model is a fiji.plugin.trackmate.Model

#----------------

Display results

#----------------

We can now plainly display the model. It will be shown on an

empty image with default magnification.

sm = SelectionModel(model)

displayer = HyperStackDisplayer(model, sm)

displayer.render()

#---

Get only part of the data stored in the file

#---

You might want to access only separate parts of the

model.

spots = model.getSpots()

spots is a fiji.plugin.trackmate.SpotCollection

96

logger.log(str(spots))

If you want to get the tracks, it is a bit trickier.

Internally, the tracks are stored as a huge mathematical

simple graph, which is what you retrieve from the file.

There are methods to rebuild the actual tracks, taking

into account for everything, but frankly, if you want to

do that it is simpler to go through the model:

trackIDs = model.getTrackModel().trackIDs(True)

only filtered tracks.

for id in trackIDs:

logger.log(str(id) + ’ - ’ + str(model.getTrackModel().trackEdges(id)))

#---------------------------------------

Building a settings object from a file

#---------------------------------------

Reading the Settings object is actually currently complicated.

The reader wants to initialize properly everything you saved

in the file, including the spot, edge, track analyzers, the

filters, the detector, the tracker, etc...

It can do that, but you must provide the reader with providers,

that are able to instantiate the correct TrackMate Java classes

from the XML data.

We start by creating an empty settings object

settings = Settings()

Then we create all the providers, and point them to the target

model:

detectorProvider = DetectorProvider()

trackerProvider = TrackerProvider()

spotAnalyzerProvider = SpotAnalyzerProvider()

edgeAnalyzerProvider = EdgeAnalyzerProvider()

trackAnalyzerProvider = TrackAnalyzerProvider()

Now we can flesh out our settings object:

reader.readSettings(settings, detectorProvider, trackerProvider, spotAnalyzerProvider,

↪→ edgeAnalyzerProvider, trackAnalyzerProvider)

logger.log(str(’\n\nSETTINGS:’))

logger.log(str(settings))

The settings object is also instantiated with the target image.

Note that the XML file only stores a link to the image.

If the link is not valid, the image will not be found.

97

imp = settings.imp

imp.show()

With this, we can overlay the model and the source image:

displayer = HyperStackDisplayer(model, sm, imp)

displayer.render()

9.3 Export spot, edge and track numerical features a�er tracking.

This example shows how to extract numerical features from tracking results.
TrackMate computes and stores three kind of numerical features:

• Spot features, such as a spot location (X, Y, Z), its mean intensity, radius etc.
• Edge or link features: An edge is a link between two spots. Its feature typically stores

the velocity and displacement, which are defined only for two consecutive spots in the
same track.

• Track features: numerical features that apply to a whole track, such as the number of
spots it contains.

By default, TrackMate only computes a very limited number of features. The GUI forces
TrackMate to compute them all, but if you do scripting, you will have to explicitly configures
TrackMate to compute the features you desire. This is done by adding feature analyzers to the
se�ings object.

There are some gotchas: some feature analyzers require other numerical features to be al-
ready calculated. If something does not work, it is a good idea to directly check the preamble
in the source code of the analyzers (TrackMate feature logic).

Finally, depending on their type, numerical features are not stored at the same place:

• Spot features are simply conveyed by the spot object, and you can access them through
spot.getFeature(’FEATURE_NAME’)

• Edge and track features are stored in a sub-component of the model object called the
FeatureModel (FeatureModel.java).

Check the script below to see a working example.

from ij import IJ, ImagePlus, ImageStack

import fiji.plugin.trackmate.Settings as Settings

import fiji.plugin.trackmate.Model as Model

import fiji.plugin.trackmate.SelectionModel as SelectionModel

import fiji.plugin.trackmate.TrackMate as TrackMate

import fiji.plugin.trackmate.Logger as Logger

import fiji.plugin.trackmate.detection.DetectorKeys as DetectorKeys

import fiji.plugin.trackmate.detection.DogDetectorFactory as DogDetectorFactory

import fiji.plugin.trackmate.tracking.sparselap.SparseLAPTrackerFactory as

↪→ SparseLAPTrackerFactory

import fiji.plugin.trackmate.tracking.LAPUtils as LAPUtils

98

https://github.com/fiji/fiji/tree/master/src-plugins/TrackMate_/src/main/java/fiji/plugin/trackmate/features
https://github.com/fiji/TrackMate/blob/master/src/main/java/fiji/plugin/trackmate/FeatureModel.java

import fiji.plugin.trackmate.visualization.hyperstack.HyperStackDisplayer as

↪→ HyperStackDisplayer

import fiji.plugin.trackmate.features.FeatureFilter as FeatureFilter

import fiji.plugin.trackmate.features.FeatureAnalyzer as FeatureAnalyzer

import fiji.plugin.trackmate.features.spot.SpotContrastAndSNRAnalyzerFactory as

↪→ SpotContrastAndSNRAnalyzerFactory

import fiji.plugin.trackmate.action.ExportStatsToIJAction as ExportStatsToIJAction

import fiji.plugin.trackmate.io.TmXmlReader as TmXmlReader

import fiji.plugin.trackmate.action.ExportTracksToXML as ExportTracksToXML

import fiji.plugin.trackmate.io.TmXmlWriter as TmXmlWriter

import fiji.plugin.trackmate.features.ModelFeatureUpdater as ModelFeatureUpdater

import fiji.plugin.trackmate.features.SpotFeatureCalculator as SpotFeatureCalculator

import fiji.plugin.trackmate.features.spot.SpotContrastAndSNRAnalyzer as

↪→ SpotContrastAndSNRAnalyzer

import fiji.plugin.trackmate.features.spot.SpotIntensityAnalyzerFactory as

↪→ SpotIntensityAnalyzerFactory

import fiji.plugin.trackmate.features.track.TrackSpeedStatisticsAnalyzer as

↪→ TrackSpeedStatisticsAnalyzer

import fiji.plugin.trackmate.util.TMUtils as TMUtils

Get currently selected image

#imp = WindowManager.getCurrentImage()

imp = IJ.openImage(’http://fiji.sc/samples/FakeTracks.tif’)

#imp.show()

#-------------------------

Instantiate model object

#-------------------------

model = Model()

Set logger

model.setLogger(Logger.IJ_LOGGER)

#------------------------

Prepare settings object

#------------------------

settings = Settings()

settings.setFrom(imp)

Configure detector

settings.detectorFactory = DogDetectorFactory()

settings.detectorSettings = {

DetectorKeys.KEY_DO_SUBPIXEL_LOCALIZATION : True,

DetectorKeys.KEY_RADIUS : 2.5,

DetectorKeys.KEY_TARGET_CHANNEL : 1,

99

DetectorKeys.KEY_THRESHOLD : 5.,

DetectorKeys.KEY_DO_MEDIAN_FILTERING : False,

}

Configure tracker

settings.trackerFactory = SparseLAPTrackerFactory()

settings.trackerSettings = LAPUtils.getDefaultLAPSettingsMap()

settings.trackerSettings[’LINKING_MAX_DISTANCE’] = 10.0

settings.trackerSettings[’GAP_CLOSING_MAX_DISTANCE’]=10.0

settings.trackerSettings[’MAX_FRAME_GAP’]= 3

Add the analyzers for some spot features.

You need to configure TrackMate with analyzers that will generate

the data you need.

Here we just add two analyzers for spot, one that computes generic

pixel intensity statistics (mean, max, etc...) and one that

computes an estimate of each spot’s SNR.

The trick here is that the second one requires the first one to be

in place. Be aware of this kind of gotchas, and read the docs.

settings.addSpotAnalyzerFactory(SpotIntensityAnalyzerFactory())

settings.addSpotAnalyzerFactory(SpotContrastAndSNRAnalyzerFactory())

Add an analyzer for some track features, such as the track mean

speed.

settings.addTrackAnalyzer(TrackSpeedStatisticsAnalyzer())

settings.initialSpotFilterValue = 1

print(str(settings))

#----------------------

Instantiate trackmate

#----------------------

trackmate = TrackMate(model, settings)

#------------

Execute all

#------------

ok = trackmate.checkInput()

if not ok:

sys.exit(str(trackmate.getErrorMessage()))

ok = trackmate.process()

if not ok:

sys.exit(str(trackmate.getErrorMessage()))

100

#----------------

Display results

#----------------

model.getLogger().log(’Found ’ + str(model.getTrackModel().nTracks(True)) + ’ tracks.’)

selectionModel = SelectionModel(model)

displayer = HyperStackDisplayer(model, selectionModel, imp)

displayer.render()

displayer.refresh()

The feature model, that stores edge and track features.

fm = model.getFeatureModel()

for id in model.getTrackModel().trackIDs(True):

Fetch the track feature from the feature model.

v = fm.getTrackFeature(id, ’TRACK_MEAN_SPEED’)

model.getLogger().log(’’)

model.getLogger().log(’Track ’ + str(id) + ’: mean velocity = ’ + str(v) + ’ ’ + model.

↪→ getSpaceUnits() + ’/’ + model.getTimeUnits())

track = model.getTrackModel().trackSpots(id)

for spot in track:

sid = spot.ID()

Fetch spot features directly from spot.

x=spot.getFeature(’POSITION_X’)

y=spot.getFeature(’POSITION_Y’)

t=spot.getFeature(’FRAME’)

q=spot.getFeature(’QUALITY’)

snr=spot.getFeature(’SNR’)

mean=spot.getFeature(’MEAN_INTENSITY’)

model.getLogger().log(’\tspot ID = ’ + str(sid) + ’: x=’+str(x)+’, y=’+str(y)+’, t=’

↪→ +str(t)+’, q=’+str(q) + ’, snr=’+str(snr) + ’, mean = ’ + str(mean))

9.4 Manually creating a model.

TrackMate aims at combining automatic and manual tracking facilities. This is also the case
when scripting: a part of the API o�ers to a edit a model extensively. A few code pa�erns must
be followed.

First, every edit must happen between a call to model.beginUpdate() and model.endUpdate():

model.beginUpdate()

... do whatever you want to the model here.

model.endUpdate()

The reason for this is that TrackMate caches each modification made to its model. This is
required because we can deal with a rather complex content. For instance: imagine you have

101

a single track that splits in two branches at some point. If you decide to remove the spot at
the fork, a complex series of events will happen:

• First, three edges will be removed: the ones that were connected to the spot you just
removed.

• Then the spot will actually be removed from the model.
• But then you need to recompute the tracks, because now, you have three tracks instead

of one.
• But also: all the numerical features of the tracks are now invalid, and you need to re-

compute them.
• And what happens to the track name? What track, amongst the 3 new ones, will receive

the old name?

Well, TrackMate does that for you automatically, but for the chain of events to happen
timely, you must make your edits within this model.beginUpdate() / model.endUpdate() code
block.

This script just shows you how to use this construct to build and populate a model from
scratch. Appending content to a model is done by, sequentially:

• Creating spot objects. You have to provide their x, y, z location, as well as a radius and
a quality value for each. At this stage, you don’t provide at what frame (or time) they
belong.

• This is done by adding the spot to the model, using model.addSpotTo(Spot, frame),
frame being a positive integer number.

• Then you create a link, or an edge as it is called in TrackMate, between two spots. You
have to provide the link cost: model.addEdge(Spot1, Spot2, cost).

Spot quality and link cost are useful to quantify automatic spot detection and linking. We
typically use negative values for these two numbers when doing manual edits. The following
script writes the le�er T using spots and links.

import ij.gui.NewImage as NewImage

import fiji.plugin.trackmate.Settings as Settings

import fiji.plugin.trackmate.Model as Model

import fiji.plugin.trackmate.Logger as Logger

import fiji.plugin.trackmate.Spot as Spot

import fiji.plugin.trackmate.SelectionModel as SelectionModel

import fiji.plugin.trackmate.TrackMate as TrackMate

import fiji.plugin.trackmate.visualization.hyperstack.HyperStackDisplayer as

↪→ HyperStackDisplayer

import fiji.plugin.trackmate.visualization.trackscheme.TrackScheme as TrackScheme

import fiji.plugin.trackmate.visualization.PerTrackFeatureColorGenerator as

↪→ PerTrackFeatureColorGenerator

import fiji.plugin.trackmate.features.ModelFeatureUpdater as ModelFeatureUpdater

import fiji.plugin.trackmate.features.track.TrackIndexAnalyzer as TrackIndexAnalyzer

import ij.plugin.Animator as Animator

102

import math

We just need a model for this script. Nothing else, since

we will do everything manually.

model = Model()

model.setLogger(Logger.IJ_LOGGER)

Well actually, we still need a bit:

We want to color-code the tracks by their feature, for instance

with the track index. But for this, we need to compute the

features themselves.

#

Manually, this is done by declaring what features interest you

in a settings object, and creating a ModelFeatureUpdater that

will listen to changes in the model, and compute the feautures

on the fly.

settings = Settings()

settings.addTrackAnalyzer(TrackIndexAnalyzer())

If you want more, add more analyzers.

The object in charge of keeping the numerical features

up to date:

ModelFeatureUpdater(model, settings)

Nothing more to do. When the model changes, this guy will be

notified and recalculate all the features you declared in

the settings object.

Every manual edit to the model must be made

between a model.beginUpdate() and a model.endUpdate()

call, otherwise you will mess with the event signalling

and feature calculation.

model.beginUpdate()

The letter T.

s1 = None

for t in range(0, 5):

x = 10 + t * 10

if s1 is None:

When you create a spot, you always have to specify its x,

y, z coordinates (even if z=0 in 2D images), AND its

radius, AND its quality. We enforce these 5 values so as

to avoid any bad surprise in other TrackMate component.

Typically, we use negative quality values to tag spot

created manually.

s1 = Spot(x, 10, 0, 1, -1)

model.addSpotTo(s1, t)

continue

103

s2 = Spot(x, 10, 0, 1, -1)

model.addSpotTo(s2, t)

You need to specify an edge cost for the link you create

between two spots. Again, we use negative costs to tag

edges created manually.

model.addEdge(s1, s2, -1)

s1 = s2

So that’s how you manually build a model from scratch.

The next lines just do more of this, to build something enjoyable.

middle = s2

s1 = s2

for t in range(0, 4):

x = 60 + t * 10

s2 = Spot(x, 10, 0, 1, -1)

model.addSpotTo(s2, t + 5)

model.addEdge(s1, s2, -1)

s1 = s2

s1 = middle

for t in range(0, 16):

y = 20 + t * 6

s2 = Spot(50, y, 0, 1, -1)

model.addSpotTo(s2, t + 5)

model.addEdge(s1, s2, -1)

s1 = s2

Commit all of this.

model.endUpdate()

This actually triggers the features to be recalculated.

Prepare display.

sm = SelectionModel(model)

color = PerTrackFeatureColorGenerator(model, ’TRACK_INDEX’)

The last line does not work if you did not compute the

’TRACK_INDEX’ feature earlier.

The TrackScheme view is a bit hard to interpret.

trackscheme = TrackScheme(model, sm)

trackscheme.setDisplaySettings(’TrackColoring’, color)

trackscheme.render()

You can create an hyperstack viewer without specifying any

ImagePlus. It will then create a dummy one tuned to

display the model content.

view = HyperStackDisplayer(model, sm)

Display tracks as comets

104

view.setDisplaySettings(’TrackDisplaymode’, 1)

view.setDisplaySettings(’TrackDisplayDepth’, 20)

view.setDisplaySettings(’TrackColoring’, color)

view.render()

Animate it a bit

imp = view.getImp()

imp.getCalibration().fps = 30

Animator().run(’start’)

And here is the resulting image:

105

Part IV.
Extending TrackMate.
Do you have a tracking or a detection algorithm you want to implement? Of course you can
write a whole so�ware from scratch. But at some point you will have to design a model to
hold the data, to write code that can load and save the results, visualize them, have even
a minimalistic GUI, and allow for the curation of the algorithm outcome. This can be long,
tedious and boring, while the part that interests you is just the algorithm you are working on.

We propose using TrackMate as a home for your algorithm. The framework is already there;
it might not be perfect but can get your algorithm integrated very quickly. And then you
can benefit from other modules, which provide GUI elements, visualization, etc. The subject
of extending TrackMate is not completely trivial. However, recent advances in the SciJava
package, brewed by the Fiji and ImageJ2 teams considerably simplified the task. It should be
of no di�iculty for an average Java developer. The following tutorials show how to integrate a
module of each kind in TrackMate. They are listed by increasing complexity, and it is a good
idea to practice them in this order.

10. How to write your own edge feature analyzer algorithm
for TrackMate.

10.1 Introduction.

This page is a tutorial that shows how to integrate your own edge feature analyzer algorithm
in TrackMate. It is the first in the series of tutorials dedicated to TrackMate extension, and
should be read first by scientists willing to extend TrackMate.

All these tutorials assume you are familiar with Java development. You should be at ease
with java core concepts such as object oriented design, inheritance, interfaces, etc. Ideally you
would even know that maven exists and that it can help you to compile so�ware. Beyond this,
the tutorials will provide what you need to know.

Edge feature analyzers are algorithms that can associate one or more scalar numerical fea-
tures to an edge, or a link between two spots in TrackMate. For instance, the instantaneous
velocity is an edge feature (you need two linked spots to compute a displacement and a time
interval), which happens to be provided by the algorithm named EdgeVelocityAnalyzer.java.

10.2 TrackMate modules.

TrackMate is extended by writing modules. Modules are just the basic algorithms that provide
TrackMate with core functionality, that the GUI and API wrap. There are 7 classes of modules:

• detection algorithms
• particle-linking algorithms
• numerical features for spots (such as mean intensity, etc.)

106

http://www.scijava.org/
https://github.com/fiji/TrackMate/blob/master/src/main/java/fiji/plugin/trackmate/features/edges/EdgeVelocityAnalyzer.java

• numerical features for links (such as velocity, orientation, etc.)
• numerical features for tracks (total displacement, length, etc.)
• visualization tools
• post-processing actions (exporting, data massaging, etc.)

All of these modules implement an interface, specific to the module class. For instance, an
edge analyzer algorithm will implement the EdgeAnalyzer interface. There are therefore seven
interfaces. They do have in common that they all extend the mother module interface called
TrackMateModule.

TrackMateModule is used for two basic purpose:

• It itself extends the SciJavaPlugin interface, which will fuel the automatic discovery of
new modules. We will discuss this point last.

• It has basic methods for the GUI integration:

– getKey() returns a unique string identifier that is used internally to reference the
algorithm. For instance: "EDGE_VELOCITY_ANALYZER"

– getName() returns a string suitable to be displayed in the GUI that named the al-
gorithm. For instance "Edge velocity".

– getIcon() returns an ImageIcon to be displayed in the GUI.
– getInfoText() returns a html string that briefly documents what the algorithm

does. Basic html markup is accepted, so you can have something like
"<html>Plot the number of spots in each frame as a

function of time. Only the <u>filtered</u> spots are

taken into account.</html>"

These are the methods used to integrate you module within the GUI. According to the class
of the module, some might be plainly ignored. For instance, the edge analyzers subject of this
tutorial ignore the icon and info text, since they are used silently within the GUI to provide
new features.

10.3 Basic project structure.

Before we step into the edge analyzers specific, you want to setup a development environ-
ment that will ease TrackMate module development. Rather than listing the requirement, just
checkout this github repository, and clone it. It contains the files of this tutorial series and
more importantly, is configured to depend on the latest TrackMate version, which will make
it available to your code.

Compiling this project with maven will generate a jar, that you will be able to drop in the fiji
plugins folder. Your modules will then be automatically detected and integrated in TrackMate.
But more on this later.

107

https://github.com/fiji/TrackMate/blob/master/src/main/java/fiji/plugin/trackmate/features/edges/EdgeAnalyzer.java
https://github.com/fiji/TrackMate/blob/master/src/main/java/fiji/plugin/trackmate/TrackMateModule.java
https://github.com/fiji/TrackMate-examples/

10.4 Core class hierarchy.

Let’s get back on our edge analyzer. For this tutorial, we are going to do something simple,
at least mathematically. We will write an edge analyzer that can return the angle (in radians)
of a link in the XY plane. Nothing more. So create a package for your new analyzer in our
project, for instance fiji.plugin.

trackmate.examples.edgeanalyzer. In this package, create a class EdgeAngleAnalyzer and let
it implement the EdgeAnalyzer interface. You should be ge�ing something like this:

package plugin.trackmate.examples.edgeanalyzer;

import fiji.plugin.trackmate.features.edges.EdgeAnalyzer;

public class EdgeAngleAnalyzer implements EdgeAnalyzer

{

}

It is important to note that we provide a blank constructor. This is very important: with
the way we use SciJavaPlugin integration, we cannot use the constructor to pass any object
reference. If your analyzer needs some objects which are not provided through the interface
methods, then you cannot code it with TrackMate directly. However we should cover most
use-cases with what we have.

10.5 Feature analyzers specific methods.

Eclipse will immediately complain (if you are using Eclipse) that your class needs to implement
some abstract method. A variety of methods popup. We see the general module methods we
discussed above, plus some specific to edge analyzers. Actually, most of the new methods
are generic for all the feature analyzers (spot, track or edge). These methods belong to the
FeatureAnalyzer interface, which EdgeAnalyzer extends, of course.

They exist because TrackMate needs to know what your feature analyzer does. Since it
computes numerical features, it needs to know what features it computes, their name, their
short name (when we want to show them in crowded part of the GUI) and their physical
dimension. Indeed, TrackMate wants to know the dimension of the feature you generate, for
it was coded in part by a conflicted physicist who does not want angles and velocities to be
plo�ed on the same graph.

These 6 methods are:

• getFeatures() returns a list of string that identifies the features the analyzer generate.
There can be more than one. This list must contain strings that can be used in a XML
file. Historically, we use capitalized strings, in the shape of java constants, such as DIS-

PLACEMENT. We call them feature keys.
• getFeatureNames() returns a map that links the feature keys to the feature names. For

instance in the GUI, we want to display "Displacement" rather than "DISPLACEMENT",
so that is what this map is about. It is important that the keys of this map are the keys
defined in the list above.

108

https://github.com/fiji/TrackMate/blob/master/src/main/java/fiji/plugin/trackmate/features/edges/EdgeAnalyzer.java
https://github.com/fiji/TrackMate/blob/master/src/main/java/fiji/plugin/trackmate/features/FeatureAnalyzer.java

• getFeatureShortNames() returns another map with the same rules. We just use its value
to display short names of features when this is needed in the GUI. There are no general
advice on how to shorten your feature names; just try until it fits.

• getFeatureDimensions() returns a last map, that gives a dimension to your features.
Physical dimensions are listed in the Dimension enum.

• getIsIntFeature() is just about sugar coating. It returns a map that tells what fea-
tures are integer mapped. For instance, if you have a feature that count things, such
as number of neighbors, you should map this feature to true here. This one is actually
not reallyuseful; there will be no problem, no loss of precision if you do not set it right.
It’s just about having numbers displayed correctly. We wanted that when there were 2
neighbors, the number of neighbors displayed was "2" and not "2.0000000000001". In our
case, we measure an angle, so this feature should map to false.

• isManualFeature() returns a single flag that a�ects all the features calculated by this
analyzer. Manual features are special features that were introduced in TrackMate v2.3.0.
Let’s leave that aside for now. Our angle feature is calculated automatically by the code
we are just about to write. So this method should return false.

In this tutorial, our analyzer just returns one feature, which is an angle. So a concrete
implementation could be:

package plugin.trackmate.examples.edgeanalyzer;

import java.util.ArrayList;

import java.util.Collection;

import java.util.Collections;

import java.util.HashMap;

import java.util.List;

import java.util.Map;

import javax.swing.ImageIcon;

import fiji.plugin.trackmate.Dimension;

import fiji.plugin.trackmate.features.edges.EdgeAnalyzer;

public class EdgeAngleAnalyzer implements EdgeAnalyzer

{

// The string key that identifies our analyzer.

private static final String KEY = "Edge angle";

// The only feature we compute here.

private static final String EDGE_ANGLE = "EDGE_ANGLE";

private static final List< String > FEATURES = new ArrayList< String >(1);

private static final Map< String, Boolean > IS_INT = new HashMap< String, Boolean >(1);

public static final Map< String, String > FEATURE_NAMES = new HashMap<String, String>(1);

public static final Map< String, String > FEATURE_SHORT_NAMES = new HashMap< String,

↪→ String >(1);

public static final Map< String, Dimension > FEATURE_DIMENSIONS = new HashMap< String,

↪→ Dimension >(1);

109

https://github.com/fiji/TrackMate/blob/master/src/main/java/fiji/plugin/trackmate/Dimension.java

// Let’s set the feature list, names, short names and dimensions.

static

{

FEATURES.add(EDGE_ANGLE);

IS_INT.put(EDGE_ANGLE, false);

FEATURE_NAMES.put(EDGE_ANGLE, "Link angle");

FEATURE_SHORT_NAMES.put(EDGE_ANGLE, "Angle");

FEATURE_DIMENSIONS.put(EDGE_ANGLE, Dimension.ANGLE);

}

private long processingTime;

/*

* TRACKMATEMODULE METHODS

*/

@Override

public String getKey()

{

return KEY;

}

// Return a user-compliant name for this analyzer.

@Override

public String getName()

{

return "Edge angle";

}

// We do not use info texts for any feature actually.

@Override

public String getInfoText()

{

return "";

}

// The same: we don’t use icons for features.

@Override

public ImageIcon getIcon()

{

return null;

}

@Override

public List< String > getFeatures()

{

return FEATURES;

}

110

@Override

public Map< String, String > getFeatureShortNames()

{

return FEATURE_SHORT_NAMES;

}

@Override

public Map< String, String > getFeatureNames()

{

return FEATURE_NAMES;

}

@Override

public Map< String, Dimension > getFeatureDimensions()

{

return FEATURE_DIMENSIONS;

}

@Override

public Map<String, Boolean> getIsIntFeature()

{

return Collections.unmodifiableMap(IS_INT);

}

@Override

public boolean isManualFeature()

{

// This feature is calculated automatically.

return false;

}

10.6 Multithreading & Benchmarking methods.

There are also 4 methods which we will skip right now. They are related to the multi-threading
aspect of the analyzer. You can code your analyzer to exploit a multithreaded environment,
and TrackMate will configure it through the following methods:

@Override

public void setNumThreads()

{

// We ignore multithreading for this tutorial.

}

@Override

public void setNumThreads(final int numThreads)

{

// We ignore multithreading for this tutorial.

}

111

@Override

public int getNumThreads()

{

// We ignore multithreading for this tutorial.

return 1;

}

There is also

public long getProcessingTime()

that returns how much milliseconds was spent on computing the features.

10.7 The core methods.

What is really important is the two methods that actually perform the work:

• isLocal()
• process(Collection< DefaultWeightedEdge > edges, Model model)

Let’s see how they would look for our example angle analyzer.

10.7.1 isLocal().

This method simply returns a boolean that states whether the features you compute are local
ones or not. By local we mean the following: Does your feature value for an edge depends on
the other edges? If no, then it is a local feature: it does not a�ect the other edges. If yes, then
it is non local. Note that it applies to all the features provided by an analyzer.

This distinction fosters some optimization in TrackMate. TrackMate does automated and
manual tracking. Allowing for both simultaneously in the same so�ware proved di�icult to
balance, particularly when the goal is to o�er good performance when manually correcting
large datasets. When a manual modification of the data is made, TrackMate recomputes all
the features, so that they are always in sync. But if a single punctual modification is made on
an edge, you want to recompute features only for this edge, not for all the others if they are
not a�ected. TrackMate can do that if the feature is local. This is why this method exists.

An example of a local edge feature would be the instantaneous velocity. The velocity of an
edge only depends on this edge and not on the rest. You might say that if you modify the
position of a spot, all the edges touching this spot will be a�ected, so it is not local. But no:
all the edges touching the spot will be modified, therefore will be marked for update, but the
other edges that are not modified will not have their velocity a�ected. So the velocity is a local
feature.

An example of a non-local edge feature would be the distance of an edge to its closest
neighbor. If you move an edge, its own feature value will be a�ected. But this will also a�ect
the closest distance to many other edges. So it is non-local and we a priori have to recompute
it for all edges.

In our case, we are coding an analyzer that returns the angle of a single edge, regardless of
the angles of the other edges. It is therefore a local feature.

112

10.7.2 process(Collection< DefaultWeightedEdge > edges, Model model).

The method that actually performs the work is the less elaborated. The concrete implementa-
tion is provided with edges, the collection of the edge whose features are to be calculated, and
model, the TrackMate model that holds all the information you need. There is just one thing
to know: Once you computed the numerical value of your feature, you need to store it in the
FeatureModel. The feature model is a part of the main model. It works like a 2D Map:

final FeatureModel fm = model.getFeatureModel();

Double val = Double.valueOf(3.1451564);

String FEATURE = "MY_AWESOME_EDGE_FEATURE";

fm.putEdgeFeature(edge, FEATURE, val);

And for our XY edge angle, here are the methods content:

@Override

public void process(final Collection< DefaultWeightedEdge > edges, final Model model)

{

final FeatureModel fm = model.getFeatureModel();

for (final DefaultWeightedEdge edge : edges)

{

Spot source = model.getTrackModel().getEdgeSource(edge);

Spot target = model.getTrackModel().getEdgeTarget(edge);

final double x1 = source.getDoublePosition(0);

final double y1 = source.getDoublePosition(1);

final double x2 = target.getDoublePosition(0);

final double y2 = target.getDoublePosition(1);

final double angle = Math.atan2(y2 - y1, x2 - x1);

fm.putEdgeFeature(edge, EDGE_ANGLE, Double.valueOf(angle));

}

}

@Override

public boolean isLocal()

{

return true;

}

10.8 Making the analyzer discoverable.

Right now, your analyzer is functional. It compiles and would return expected results. Every-
thing is fine.

Except that TrackMate doesn’t even know it exists. It sits in his lonely corner and is perfectly
useless.

Until TrackMate v2.2.0, there was no other to extend TrackMate than to modify it or fork
it, then recompile and redeploy it from scratch. With v2.2.0 we benefited from the e�ort of
the ImageJ2 team who built a very simple and very clever discovery mechanism, that allow to

113

https://github.com/fiji/TrackMate/blob/master/src/main/java/fiji/plugin/trackmate/FeatureModel.java

simply drop a jar in the plugins folder of Fiji and have TrackMate be aware of it. On top of it
all, it is plain and simple.

Just add the following line before the class declaration:

@Plugin(type = EdgeAnalyzer.class)

public class EdgeAngleAnalyzer implements EdgeAnalyzer

{

...

and that’s it.

To make a TrackMate module discoverable in TrackMate, just annotate its class
with @Plugin(type = TrackMateModuleClassExtending.class).

Just the line @Plugin(type = EdgeAnalyzer.class) is enough. There are also mechanisms
that allow fine tuning of priority, visibility (in the GUI menus), or enabling/disabling, but we
will see this later. Right now, just compile your project, and drop the resulting jar in the Fiji
plugins folder. Here is what you get:

Great, no? You can find the full source for this example here. It can also be used as a
template for your analyzer.

114

https://github.com/fiji/TrackMate-examples/blob/master/src/main/java/plugin/trackmate/examples/edgeanalyzer/EdgeAngleAnalyzer.java

11. How to write your own track feature analyzer algorithm
for TrackMate.

11.1 Introduction.

This article is the second in the series dedicated to extending TrackMate with your own mod-
ules. Here we focus on creating feature analyzers: small algorithms that calculate one or
several numerical values for the TrackMate results. The previous section focused on writing
edge analyzers: algorithms that allocate a numerical value to the link between two spots. In
this section, we will create a feature analyzer for tracks that calculate numerical values for
whole tracks. To make it simple, and also to answer the request of a colleague, we will make
an analyzer that reports the location of the starting and ending points of a track. Actually,
we will not learn much beyond what we saw previously. The only li�le change is that our
analyzer will generate six numerical values instead of one. We will use the SciJava discovery
mechanism as before, but just for the sake of it, we will introduce how to disable modules.

11.2 Track analyzers.

All the track feature analyzers must implement TrackAnalyzer interface. Like for the
EdgeAnalyzer interface, it extends both

• FeatureAnalyzer that helps you declaring what you compute,
• and TrackMateModule, that is in charge of the integration in TrackMate.

The only changes for us are two methods specific to tracks:

public void process(Collection< Integer > trackIDs, Model model);

the does the actual feature calculation for the specified tracks, and

public boolean isLocal();

that specified whether the calculation of the features for one track a�ects only this track or
all the tracks. For the discussion on local vs non-local feature analyzers, report to the previous
section.

11.3 Track feature analyzer header.

Like all TrackMate modules, you need to annotate your class to make it discoverable by Track-
Mate. It takes the following shape:

@Plugin(type = TrackAnalyzer.class)

public class TrackStartSpotAnalyzer implements TrackAnalyzer

{

// etc...

and that’s good enough.

115

http://imagej.net/SciJava
https://github.com/fiji/TrackMate/blob/master/src/main/java/fiji/plugin/trackmate/features/track/TrackAnalyzer.java
https://github.com/fiji/TrackMate/blob/master/src/main/java/fiji/plugin/trackmate/features/edges/EdgeAnalyzer.java
https://github.com/fiji/TrackMate/blob/master/src/main/java/fiji/plugin/trackmate/features/FeatureAnalyzer.java
https://github.com/fiji/TrackMate/blob/master/src/main/java/fiji/plugin/trackmate/TrackMateModule.java

11.4 Declaring features.

Declaring the features your provide is done as before. This time, a single analyzer returns 6
values, so you need to declare them. Here is the related code:

@Plugin(type = TrackAnalyzer.class)

public class TrackStartSpotAnalyzer implements TrackAnalyzer

{

private static final String KEY = "TRACK_START_SPOT_ANALYZER";

public static final String TRACK_START_X = "TRACK_START_X";

public static final String TRACK_START_Y = "TRACK_START_Y";

public static final String TRACK_START_Z = "TRACK_START_Z";

public static final String TRACK_STOP_X = "TRACK_STOP_X";

public static final String TRACK_STOP_Y = "TRACK_STOP_Y";

public static final String TRACK_STOP_Z = "TRACK_STOP_Z";

private static final List< String > FEATURES = new ArrayList< String >(6);

private static final Map< String, String > FEATURE_SHORT_NAMES = new HashMap< String,

↪→ String >(6);

private static final Map< String, String > FEATURE_NAMES = new HashMap<String, String>(6);

private static final Map< String, Dimension > FEATURE_DIMENSIONS = new HashMap< String,

↪→ Dimension >(6);

static

{

FEATURES.add(TRACK_START_X);

FEATURES.add(TRACK_START_Y);

FEATURES.add(TRACK_START_Z);

FEATURES.add(TRACK_STOP_X);

FEATURES.add(TRACK_STOP_Y);

FEATURES.add(TRACK_STOP_Z);

FEATURE_NAMES.put(TRACK_START_X, "Track start X");

FEATURE_NAMES.put(TRACK_START_Y, "Track start Y");

FEATURE_NAMES.put(TRACK_START_Z, "Track start Z");

FEATURE_NAMES.put(TRACK_STOP_X, "Track stop X");

FEATURE_NAMES.put(TRACK_STOP_Y, "Track stop Y");

FEATURE_NAMES.put(TRACK_STOP_Z, "Track stop Z");

FEATURE_SHORT_NAMES.put(TRACK_START_X, "X start");

FEATURE_SHORT_NAMES.put(TRACK_START_Y, "Y start");

FEATURE_SHORT_NAMES.put(TRACK_START_Z, "Z start");

FEATURE_SHORT_NAMES.put(TRACK_STOP_X, "X stop");

FEATURE_SHORT_NAMES.put(TRACK_STOP_Y, "Y stop");

FEATURE_SHORT_NAMES.put(TRACK_STOP_Z, "Z stop");

FEATURE_DIMENSIONS.put(TRACK_START_X, Dimension.POSITION);

FEATURE_DIMENSIONS.put(TRACK_START_Y, Dimension.POSITION);

FEATURE_DIMENSIONS.put(TRACK_START_Z, Dimension.POSITION);

FEATURE_DIMENSIONS.put(TRACK_STOP_X, Dimension.POSITION);

116

FEATURE_DIMENSIONS.put(TRACK_STOP_Y, Dimension.POSITION);

FEATURE_DIMENSIONS.put(TRACK_STOP_Z, Dimension.POSITION);

}

/*

* FEATUREANALYZER METHODS

*/

@Override

public List< String > getFeatures()

{

return FEATURES;

}

@Override

public Map< String, String > getFeatureShortNames()

{

return FEATURE_SHORT_NAMES;

}

@Override

public Map< String, String > getFeatureNames()

{

return FEATURE_NAMES;

}

@Override

public Map< String, Dimension > getFeatureDimensions()

{

return FEATURE_DIMENSIONS;

}

Let’s compute them now.

11.5 Accessing tracks in TrackMate.

In the previous article, we went maybe a bit quickly on how to access data in TrackMate. This
is not the goal of this series, but here is a quick recap:

All the track structure is stored in a sub-component of the model called the TrackModel.
It stores the collection of links between two spots that builds a graph, and has some rather
complex logic to maintain a list of connected components: the tracks.

The tracks themselves are indexed by their ID, stored as an <code>int</code>, that has no
particular meaning. Once you have the ID of track, you can get the spots it contains with

trackModel.trackSpots(trackID)

and its links (or edges) with

trackModel.trackEdges(trackID)

Let’s exploit this.

117

https://github.com/fiji/TrackMate/blob/master/src/main/java/fiji/plugin/trackmate/TrackModel.java

11.6 Calculating the position of start and end points.

Well, it is just about retrieving a track and identifying its starting and end points. Here is the
whole code for the processing method:

@Override

public void process(final Collection< Integer > trackIDs, final Model model)

{

// The feature model where we store the feature values:

final FeatureModel fm = model.getFeatureModel();

// Loop over all the tracks we have to process.

for (final Integer trackID : trackIDs)

{

// The tracks are indexed by their ID. Here is how to get their

// content:

final Set< Spot > spots = model.getTrackModel().trackSpots(trackID);

// Or .trackEdges(trackID) if you want the edges.

// This set is NOT ordered. If we want the first one and last

// one we have to sort them:

final Comparator< Spot > comparator = Spot.frameComparator;

final List< Spot > sorted = new ArrayList< Spot >(spots);

Collections.sort(sorted, comparator);

// Extract and store feature values.

final Spot first = sorted.get(0);

fm.putTrackFeature(trackID,TRACK_START_X, Double.valueOf(first.getDoublePosition(0)));

fm.putTrackFeature(trackID,TRACK_START_Y, Double.valueOf(first.getDoublePosition(1)));

fm.putTrackFeature(trackID,TRACK_START_Z, Double.valueOf(first.getDoublePosition(2)));

final Spot last = sorted.get(sorted.size() - 1);

fm.putTrackFeature(trackID, TRACK_STOP_X, Double.valueOf(last.getDoublePosition(0)));

fm.putTrackFeature(trackID, TRACK_STOP_Y, Double.valueOf(last.getDoublePosition(1)));

fm.putTrackFeature(trackID, TRACK_STOP_Z, Double.valueOf(last.getDoublePosition(2)));

}

}

The whole code for the analyzer can be found here.

11.7 Wrapping up.

The new track features get properly integrated along with other native features:

118

https://github.com/fiji/TrackMate-examples/blob/master/src/main/java/plugin/trackmate/examples/trackanalyzer/TrackStartSpotAnalyzer.java

In the next article we will build a spot analyzer and complicate things a bit, by introducing
the notion of priority. But before this, a short word on how to disable a module.

11.8 How to disable a module.

Suppose you have in your code tree a TrackMate module you wish not to use anymore. The
trivial way would be to delete its class, but here is another one what allows us to introduce
SciJava plugin annotation parameters.

The @Plugin(type = TrackAnalyzer.class) annotation accepts extra parameters on top
of the type one. They all take the shape of a key = value pair, and a few of them allow the fine
tuning of the TrackMate module integration.

The first one we will see is the enabled value. It accepts a boolean as value and by default it
is true. Its usage is obvious:

If you want to disable a TrackMate module, add the enabled = false annotation
parameter.

Like this:

@Plugin(type = TrackAnalyzer.class, enabled = false)

Disabled modules are not even instantiated. They are as good as dead, except that you can
change your mind easily. By the way, you can see that the TrackMate source tree has many
of these disabled modules...

119

http://imagej.net/SciJava

12. How to write your own track feature analyzer algorithm
for TrackMate.

12.1 Introduction.

This third article in the series dedicated to extending TrackMate deals with spot feature ana-
lyzer. This is the last of the three kind of feature analyzers you can create, and it focuses on
spots, or detections.

Spot features are typically calculated from the spot location and the image data. For in-
stance, there is a spot feature that reports the mean intensity within the spot radius. You
need to have the spot location, its radius and the image data to compute it.

In this tutorial, we will generate an analyzer that is not directly calculated from the image
data. This will enable us to skip over introducing ImgLib2 API, which would have considerably
augmented the length of this series. But this choice does not only aim at nurturing my lazi-
ness: We will make our feature depend on other features which will allow us to introduce
analyzers priority.

But before this, let’s visit the spot feature analyzers specificities.

12.2 Spot analyzers and spot analyzer factories.

In the two previous articles we dealt with edge and track analyzers. We could make them in a
single class, and this class embedded both the code for

• TrackMate integration (feature names, dimensions, declaration, etc...);
• and actual feature calculation.

For spot analyzer, the two are separated.
You must first create a SpotAnalyzerFactory. This factory will be in charge of the Track-

Mate integration. The interface extends both the TrackMateModule and the FeatureAnalyzer
interfaces. It is the class you will need to annotate with a SciJava annotation for automatic
discovery.

But it is also in charge of instantiating SpotAnalyzers. As you can see, this interface just
extends ImgLib2 Algorithm, so all parameters will have to be passed in the constructor, which
can be what you want thanks to the factory. We do not need a return value method, because
results are stored directly inside the spot objects. But we will see this later.

Let’s get started with our example.

12.3 The spot analyzer factory.

We want to generate an analyzer that will compute for each spot, its intensity relative to
the mean intensity of all spots in the same frame. So you get for this feature a value of 1
if its intensity is equal to the mean, etc... We could have our analyzer actually compute the
pixel intensity for each spot, take the mean over a frame, then normalize, etc... But, there
is an analyzer that already computes the spot intensity and we can re-use it. Check the
SpotIntensityAnalyzerFactory.

120

http://imagej.net/TrackMate
http://imagej.net/ImgLib2
http://imagej.net/How to write your own edge feature analyzer algorithm for TrackMate
http://imagej.net/How to write your own track feature analyzer algorithm for TrackMate
https://github.com/fiji/TrackMate/blob/master/src/main/java/fiji/plugin/trackmate/features/spot/SpotAnalyzerFactory.java
https://github.com/fiji/TrackMate/blob/master/src/main/java/fiji/plugin/trackmate/TrackMateModule.java
https://github.com/fiji/TrackMate/blob/master/src/main/java/fiji/plugin/trackmate/features/FeatureAnalyzer.java
http://imagej.net/SciJava
https://github.com/fiji/TrackMate/blob/master/src/main/java/fiji/plugin/trackmate/features/spot/SpotAnalyzer.java
https://github.com/imglib/imglib/blob/master/algorithms/core/src/main/java/net/imglib2/algorithm/Algorithm.java
https://github.com/fiji/TrackMate/blob/master/src/main/java/fiji/plugin/trackmate/features/spot/SpotIntensityAnalyzerFactory.java

It is a good idea to reuse this value in our computations, both for the quickness of develop-
ment and runtime performance. But if we do so, we must ensure that the feature we depend
on is available when our new analyzer runs. There is a way to do that, thanks to the notion of
priority, which we will deal with later.

Right now, let’s focus on the factory class itself. There is not much to say: its content
resembles all the feature analyzers we saw so far. So I am going to skip over the details and
point you to the full source code here.

The one interesting part is the factory method in charge of instantiating the SpotAnalyzer:

@Override

public SpotAnalyzer< T > getAnalyzer(Model model, ImgPlus< T > img, int frame, int

↪→ channel)

{

return new RelativeIntensitySpotAnalyzer< T >(model, frame);

}

Since we want to build a feature that does not need the image data, the constructor just skips
the image reference. And that’s it. We must now move on to the analyzer itself to implement
the feature calculation logic.

12.4 The spot analyzer.

As you noted in the above method, each analyzer is meant to operate only on one frame. It can
access the whole model, but it is supposed to compute the values for all the spots of a single
frame. This permits multithreading: The factory will be asked to generate as many analyzer
as there is threads available, and they will run concurrently. And we, as we build our analyzer
- do not have to worry about concurrent issues.

A li�le word about the expected execution context: The TrackMate GUI operates in steps, as
you have noted. First the detection step generates spots, then they are filtered, then they are
tracked, etc... Therefore, when I said earlier that the whole model is available for calculation,
this is not entirely true. When using the GUI, spot numerical features are used to filter spots
a�er they have been detected. So that this stage, there is no tracks yet. There is not even
filtered spots. A spot feature cannot depend on these objects, and this is a built-in limitation
of TrackMate. So be cautious on what your numerical feature depends.

Before we go into the code, here is quick recap on the TrackMate model API. A�er the
detection step, the spots are stored in a SpotCollection object. It gathers all the spots, and can
deal with their filtering visibility, etc... Spot analyzers are meant to operate only on one frame,
so we will need to require the spot of this frame. The target frame is specified at construction
time, by the factory.

The SpotAnalyzer interface is pre�y naked. There is nothing specific, and all the logic
has to go in the process() method. There is no need to have a method to return the re-
sults of the computation, for spot objects can store their own feature values, thanks to the
Spot.putFeature(feature, value) method.

Here is what the process() method of the analyzer looks like:

@Override

public boolean process()

121

https://github.com/fiji/TrackMate-examples/blob/master/src/main/java/plugin/trackmate/examples/spotanalyzer/RelativeIntensitySpotAnalyzerFactory.java
https://github.com/fiji/TrackMate/blob/master/src/main/java/fiji/plugin/trackmate/SpotCollection.java
https://github.com/fiji/TrackMate/blob/master/src/main/java/fiji/plugin/trackmate/features/spot/SpotAnalyzer.java

{

/*

* Collect all the spots from the target frame. In a

* SpotAnalyzer, you cannot interrogate only visible

* spots, because spot features are typically used to

* determine whether spots are going to be visible or

* not. This happens in the GUI at the spot filtering

* stage: We are actually building a feature on which

* a filter can be applied. So the spot features must

* be calculated over ALL the spots.

*/

/*

* The spots are stored in a SpotCollection before they

* are tracked. The SpotCollection is the product of

* the detection step.

*/

final SpotCollection sc = model.getSpots();

// ’false’ means ’not only the visible spots, but all spots’.

Iterator< Spot > spotIt = sc.iterator(frame, false);

/*

* Compute the mean intensity for all these spots.

*/

double sum = 0;

int n = 0;

while (spotIt.hasNext())

{

final Spot spot = spotIt.next();

// Collect the mean intensity in the spot radius.

final double val = spot.getFeature(SpotIntensityAnalyzerFactory.MEAN_INTENSITY);

sum += val;

n++;

}

if (n == 0)

{

// Nothing to do here.

return true;

}

final double mean = sum / n;

/*

* Make a second pass to set the relative intensity of these

* spots with respect to the mean we just calculated.

*/

122

spotIt = sc.iterator(frame, false);

while (spotIt.hasNext())

{

final Spot spot = spotIt.next();

final double val = spot.getFeature(SpotIntensityAnalyzerFactory.MEAN_INTENSITY);

final double relMean = val / mean;

// Store the new feature in the spot

spot.putFeature(RELATIVE_INTENSITY, Double.valueOf(relMean));

}

return true;

}

The code for the whole class is here.

12.5 Using SciJava priority to determine order of execution.

Now it’s time to discuss the delicate subject of dependency.
As stated above, our new analyzer depends on some other features to compute. Therefore,

the analyzers that calculate these other features need to run before our analyzer. Or else you
will bet NullPointerExceptions randomly.

TrackMate does not o�er a real in-depth module dependency management. It simply o�ers
to determine the order of analyzer execution thanks to the SciJava plugin priority parame-
ter.

For instance, if you check the annotation part of the spot analyzer factory, you can see that
there is an extra parameter, priority:

@Plugin(type = SpotAnalyzerFactory.class, priority = 1d)

This priority parameter accepts a double as value and this value determines the order of
execution. Careful, the rule is the opposite of what would make sense for a priority:

Feature analyzers are executed in order according to increasing priority. This
means that analyzers with the greatest priority are executed last.

By convention, if your feature analyzer depends on the features calculated by N other an-
alyzers, you take the larger priority of these analyzers, and add 1. In our case, we depend
on the SpotIntensityAnalyzerFactory, which as a priority of 0 (the default if the parameter is
unspecified). So quite logically, we set the priority of our analyzer to be 1. This ensures the
proper execution order.

12.6 Wrapping up.

Apart from the discussion on the priority and execution order, there is not much to say. It
works!

123

https://github.com/fiji/TrackMate-examples/blob/master/src/main/java/plugin/trackmate/examples/spotanalyzer/RelativeIntensitySpotAnalyzer.java
http://imagej.net/SciJava
https://github.com/fiji/TrackMate/blob/master/src/main/java/fiji/plugin/trackmate/features/spot/SpotIntensityAnalyzerFactory.java

13. How to write your own viewer for TrackMate.

13.1 Introduction.

Developing a custom view for TrackMate is hard and painful. Of course it must be a graphical
representation of the model: the tracking results with all intermediate steps. If you want to
build something really useful, it has to be interactive and should allow modifying the model.
And be aware that modifications might happen somewhere else. Performance is also critical:
since it stands at the user interface, it must be responsive, and possibly deal with large models
(millions of detections). One of the main good reason to extend TrackMate is most likely that
there is ready some views available.

Still, it is perfectly possible to build something useful without fulfilling all these require-
ments. And we still hope that someday someone will contribute a view that displays the
model in the orthogonal slicer of Fiji.

This tutorial introduces the view interfaces of TrackMate, and since they deal with user
interactions, we will also review the TrackMate event system. As for the SciJava discovery
system, we will see how to make a TrackMate module available in TrackMate, but not visible
to the user, using the visible parameter.

13.2 A custom TrackMate view.

Like for the spot feature analyzers, a TrackMate view is separated in two parts, that each
extends a di�erent interface:

124

http://imagej.net/TrackMate
http://imagej.net/SciJava
http://imagej.net/How_to_write_your_own_spot_feature_analyzer_algorithm_for_TrackMate

• The TrackMateModelView, that is the actual view of the model. All the hard work is
done here.

• The ViewFactory that is a factory in charge of instantiating the view and of the integra-
tion in TrackMate. This interface extends the TrackMateModule interface, so we expect
to find there some of the methods we discussed earlier, and the SciJava annotation.

In this tutorial, we will build something simple. We will limit ourselves to develop a view that
simple messages the user every time something happens in TrackMate. For instance, when the
spots are detected, how many there are; if he selects spots and edges, how many of them; etc.
And we will just reuse the Fiji log window for this, which will save us from the full development
of a graphical view of the model.

But because this is a bit limited, we will not let the user pick this view as the main one,
just a�er the detection step. A SciJava parameter will be used to make it invisible in the view
selection menu. To make good use of it, we still need some way to launch this view, but this
will be the subject of the next tutorial. Right now, we just focus on building the view.

13.3 The ViewFactory.

The factory itself has nothing particular. On top of the TrackMateModule methods, it just has
a method to instantiate the view it controls:

@Override

public TrackMateModelView create(Model model, Settings settings, SelectionModel

↪→ selectionModel)

You can see that we can possibly pass 3 parameters to the constructor of the view itself:
the model of course, but also the se�ings object, so that we can find there a link to the image
object. The HyperStackDisplayer uses it to retrieve the ImagePlus over which to display the
TrackMate data. The selection model is also o�ered, and the instance passed is the common
one used in the GUI, so that a selection made by the user can be shared amongst all views.

13.4 The TrackMateModelView interface.

13.4.1 Methods.

This is where the hard work takes place and there is a lot to say. However, the method you find
in this interface are scarce and relate just to general use, and most of them are not mandatory:

• public void render();

This is the initialization method for your view. Your view should not show up to the user
when it is instantiating, but only when this method is called. This allows TrackMate to
properly manage the rendering.

• public void refresh();

125

http://imagej.net/How_to_write_your_own_spot_feature_analyzer_algorithm_for_TrackMate
https://github.com/fiji/TrackMate/blob/master/src/main/java/fiji/plugin/trackmate/visualization/ViewFactory.java
https://github.com/fiji/TrackMate/blob/master/src/main/java/fiji/plugin/trackmate/TrackMateModule.java
http://imagej.net/SciJava
http://imagej.net/SciJava
https://github.com/fiji/TrackMate/blob/master/src/main/java/fiji/plugin/trackmate/visualization/hyperstack/HyperStackDisplayerFactory.java

This method should be in charge of updating the view whenever it is sensible to do so.
Careful: it is not called automatically when the model has changed. You have to listen
to model change yourself, and call this method manually if you want your view to be
in sync. However, it is called automatically whenever the user changes a display se�ing
(because views are not made to listen to GUI changes). But more on that below.

• public void clear();

This one is rather explicit. It ensures a way to clear a view in case it is not kept in sync
with the model changes.

• public void centerViewOn(Spot spot);

This is a non-mandatory convenience tool that allow centering a view (whatever it
means) on a specific Spot. It is called for instance when the user selects one spot in
the GUI: all the views that implement this method move and pan to show this spot.

• The three methods related to display se�ings:

public Map< String, Object > getDisplaySettings();

public void setDisplaySettings(String key, Object value);

public Object getDisplaySettings(String key);

are explained below.

• public Model getModel();

exposes the model this view renders.

• public String getKey();

Returns the unique key that identifies this view. Careful: this key must be the
same that for the ViewFactory that can instantiates this view. This is used to save and
restore the views present in a TrackMate session.

13.4.2 Display se�ings.

It should be possible to configure the look and feel of your view, or even to set what is visible
or not. This is made through display se�ings, and 3 methods are used to pass then around:

public Map< String, Object > getDisplaySettings();

public void setDisplaySettings(final String key, final Object value);

public Object getDisplaySettings(final String key);

Display se�ings are passed using a pair of key (as String) / value (as Object, that should be
cast upon the right class).

The TrackMate GUI allows the user to edit a limited series of display se�ings that ought to
be common to all views. These are the se�ings you can tune on the antepenultimate panel of
the GUI (spot visible or not, color by feature, etc...). If you feel like it, your view can just ig-
nore them. Otherwise, their keys and desired classes are defined in the TrackMateModelView
interface. Check the static fields there.

Everytime the user changes a se�ing in the GUI, the new se�ing value is passed with the
setDisplaySettings() method, then the refresh() method is called as well.

126

https://github.com/fiji/TrackMate/blob/master/src/main/java/fiji/plugin/trackmate/visualization/TrackMateModelView.java

13.4.3 Listening to model changes.

You don’t have to keep your view in sync with the model. You can make something useful
that would just capture a snapshot of the model as it is when you launch the view and be
happy about it. But, TrackMate is about allowing both automatic and manual annotation of
the image data, so most likely a very useful view will echoes the changes made to the model.
Ideally it would even enable these changes to be made. But this is out of the scope of this
tutorial.

If you want to listen to changes made to the model, you have to register as a listener to it.
This is made through

Model.addModelChangeListener(YourViewInstance);

and then you get a new method:

public void modelChanged(final ModelChangeEvent event)

The event itself can report 5 types of changes:

• The spots detection is done. In the GUI, this is sent just a�er the detection step, before
the initial filtering step.

• The spots are filtered reversibly. This is sent everytime you change anything on the spot
filtering panel (a new filter, a threshold value, etc..).

• The tracking step is done. That just follows the tracking step in the GUI.
• The tracks are filtered. Like for the spots.
• The model is modified. By modification, we mean an incremental, manual modification

of the model. The user might have deleted a spot, or moved it in space, or changed
its size, or add an edge between two spots, etc. In that case, the ModelChangeEvent
instance can be interrogated to know what was changed, deleted, added, etc.

13.4.4 Listening to selection changes.

The TrackMate GUI shares a common instance of SelectionModel that stores the selection the
user made. This is convenient when exploring the tracking results. Your view can be kept in
sync with the selection changes by implementing the SelectionChangeListener interface. It
adds a single method:

public void selectionChanged(SelectionChangeEvent event);

13.5 A simple event logger.

Let’s keep our custom view simple: we will just build an event logger that recycles the IJ logger
window to echo what happens to the model. We then of course have to implement the two
listener interfaces mentioned above. But the code stays pre�y simple: check here for the
details.

As for the factory, nothing fancy:

127

https://github.com/fiji/TrackMate/blob/master/src/main/java/fiji/plugin/trackmate/ModelChangeEvent.java
https://github.com/fiji/TrackMate/blob/master/src/main/java/fiji/plugin/trackmate/SelectionModel.java
https://github.com/fiji/TrackMate/blob/master/src/main/java/fiji/plugin/trackmate/SelectionChangeListener.java
https://github.com/fiji/TrackMate-examples/blob/master/src/main/java/plugin/trackmate/examples/view/EventLoggerView.java

package plugin.trackmate.examples.view;

import ij.ImageJ;

import ij.ImagePlus;

import javax.swing.ImageIcon;

import org.scijava.plugin.Plugin;

import fiji.plugin.trackmate.Model;

import fiji.plugin.trackmate.SelectionModel;

import fiji.plugin.trackmate.Settings;

import fiji.plugin.trackmate.TrackMatePlugIn_;

import fiji.plugin.trackmate.visualization.TrackMateModelView;

import fiji.plugin.trackmate.visualization.ViewFactory;

@Plugin(type = ViewFactory.class)

public class EventLoggerViewFactory implements ViewFactory

{

private static final String INFO_TEXT = "<html>This factory instantiates an event logger

↪→ view for TrackMate, that uses the IJ log window to just echo all the event sent by

↪→ the model.</html>";

public static final String KEY = "EVENT_LOGGER_VIEW";

@Override

public String getInfoText()

{

return INFO_TEXT;

}

@Override

public ImageIcon getIcon()

{

return null;

}

@Override

public String getKey()

{

return KEY;

}

@Override

public String getName()

{

return "Event logger view";

}

128

@Override

public TrackMateModelView create(final Model model, final Settings settings, final

↪→ SelectionModel selectionModel)

{

return new EventLoggerView(model, selectionModel);

}

/*

* MAIN METHOD

*/

public static void main(final String[] args)

{

ImageJ.main(args);

new ImagePlus("../fiji/samples/FakeTracks.tif").show();

new TrackMatePlugIn_().run("");

}

}

Just note that the SciJava annotation mention the ViewFactory class. This is enough to have
the view selectable in the GUI menu:

Note that this time, TrackMate good use of the getName() and getInfoText() methods. And
here is what you get a�er a few manipulations:

129

http://imagej.net/SciJava

13.6 Controlling the visibility of your view with the SciJava visible

parameter.

Our view is a good dummy example. It is not that useful, and the info panel of the GUI could
be used instead advantageously. We have nothing against it, but maybe we should not let
users select it as the main view in the GUI, otherwise they might get frustrated (well, the
HyperStack view is always used, whatever you choose, so we could not mind, but eh).

There is way to do that, just by tuning the SciJava annotation:

To make a TrackMate module available in TrackMate, but not visible in the
GUI menus, use the annotation parameter visible = false.

So editing the header of our ViewFactory to make it look like:

@Plugin(type = ViewFactory.class, visible = false)

public class EventLoggerViewFactory implements ViewFactory

is enough to hide it in the menu. This is di�erent from the enabled parameter we saw in the
previous section. The factory is instantiated and available in TrackMate; it just does not show
up in the menu. But how could we make use of it then? you want to ask. Fortunately, this is
just the subject of the next section, on TrackMate actions.

130

14. How to write custom actions for TrackMate.

14.1 Introduction.

Actions are a simple solution to the problem of adding random features to TrackMate without
having to change the GUI too much. Adding bu�ons or dialogs or extra panels is cumbersome
and it would complexify the GUI, which was meant to remain simple. A TrackMate action is
a lazy workaround for this problem. You must keep in mind that is a placeholder for random
feature ideas, and provided a quick and dirty way to test them.

A TrackMate action takes the shape of an item in a drop-down list in the last panel of the
GUI. It can do more or less anything, since we pass everything to the action, even a reference
to the GUI itself. Thanks to the SciJava discovery mechanism, we do not have to worry about
adding it on the GUI: it will automatically be listed in the action list. The drawback of this
simplicity is that you cannot use it to provide elaborated user interaction mechanisms, such
as the ones you can find in a view.

In this tutorial, we will use it to launch the event logger we created in the previsou section
of this series. If you remember, we saw in the last paragraph how to use the visible = false

parameter the SciJava annotation to hide it from the view menu. Hereby preventing the user
to access it. No problem, we will now build an action that will launch it as a supplementary
view.

14.2 The TrackMateActionFactory interface.

Again, the action behavior and its integration in TrackMate are split in two classes. The behav-
ior is described by the TrackMateAction interface. The integration mechanism is controlled
by the TrackMateActionFactory interface, which extends the TrackMateModule interface.

14.2.1 SciJava parameters recapitulation.

There is not much to say about the factory itself. Ii is the class that must be annotated with

@Plugin(type = TrackMateActionFactory.class)

All the SciJava annotation parameters apply, and they have the following meaning:

• The enabled = true/false parameter is used to control whether the action is enabled
or not. A disabled action is not even instantiated.

• The visible = true/false parameter determines whether the action is listed in the ac-
tion panel. If false, the action factory is instantiated but the corresponding action will
not be listed in the panel, preventing any use.

• The priority = double parameter is used here just to determine the order in which the
action items appear in the list. High priorities are listed last.

14.2.2 Action factory methods.

As of TrackMate version 2.2.0 (March 2014), actions are the only TrackMate modules that use
the getIcon() method. The icon is then displayed in the action list, next to the action name.

131

http://imagej.net/TrackMate
http://imagej.net/SciJava
http://imagej.net/SciJava
https://github.com/fiji/TrackMate/blob/master/src/main/java/fiji/plugin/trackmate/action/TrackMateAction.java
https://github.com/fiji/TrackMate/blob/master/src/main/java/fiji/plugin/trackmate/action/TrackMateActionFactory.java
https://github.com/fiji/TrackMate/blob/master/src/main/java/fiji/plugin/trackmate/TrackMateModule.java
http://imagej.net/TrackMate

That’s it for the TrackMateModule part.
The method specific to actions is more interesting:

@Override

public TrackMateAction create(final TrackMateGUIController controller)

This means that when we create our specific action, we have access to the some of GUI
context through the controller. We therefore have to check its API to know what we can get.
It gives us access to:

• The GUI window itself (public TrackMateWizard getGUI()), that we can use as parent
for dialogs, wild live GUI editing...

• The trackmate plugin (public TrackMate getPlugin()), hereby the model and se�ings
objects.

• The selection model (public SelectionModel getSelectionModel())
• Even the GUI model (public TrackMateGUIModel getGuimodel())
• And all the providers that manage the modules of TrackMate.

So you can pre�y well mess stu� with the controller, but it gives us access to mainly everything.
In our case, we do not need much. Here is the code for our simple event logger launcher:

package plugin.trackmate.examples.action;

import javax.swing.ImageIcon;

import org.scijava.plugin.Plugin;

import fiji.plugin.trackmate.action.TrackMateAction;

import fiji.plugin.trackmate.action.TrackMateActionFactory;

import fiji.plugin.trackmate.gui.TrackMateGUIController;

@Plugin(type = TrackMateActionFactory.class)

public class LaunchEventLoggerActionFactory implements TrackMateActionFactory

{

private static final String INFO_TEXT = "<html>This action will launch a new event logger,

↪→ that uses the ImageJ log window to append TrackMate events.</html>";

private static final String KEY = "LAUNCH_EVENT_LOGGER";

private static final String NAME = "Launch the event logger";

@Override

public String getInfoText()

{

return INFO_TEXT;

}

@Override

public ImageIcon getIcon()

{

132

https://github.com/fiji/TrackMate/blob/master/src/main/java/fiji/plugin/trackmate/gui/TrackMateGUIController.java

return null; // No icon for this one.

}

@Override

public String getKey()

{

return KEY;

}

@Override

public String getName()

{

return NAME;

}

@Override

public TrackMateAction create(final TrackMateGUIController controller)

{

return new LaunchEventLoggerAction(controller.getPlugin().getModel(), controller.

↪→ getSelectionModel());

}

}

Nothing complicated.

14.3 The TrackMateAction interface.

This interface is just made of two methods:

public void execute(TrackMate trackmate);

public void setLogger(Logger logger);

The execute method is the one triggered by the user when he clicks the Execute bu�on.
It receives a TrackMate instance that can be of use. In our case, as you saw in the factory class,
we got the model and selection model through the controller. The other method is used to pass
a logger instance that is specific to the action panel in the GUI. All messages and updates sent
to this logger will be shown on the action panel. Here is how this translates simply in a simple
launcher:

package plugin.trackmate.examples.action;

import plugin.trackmate.examples.view.EventLoggerView;

import fiji.plugin.trackmate.Logger;

import fiji.plugin.trackmate.Model;

import fiji.plugin.trackmate.SelectionModel;

import fiji.plugin.trackmate.TrackMate;

import fiji.plugin.trackmate.action.TrackMateAction;

public class LaunchEventLoggerAction implements TrackMateAction

133

{

private final SelectionModel selectionModel;

private final Model model;

private Logger logger;

public LaunchEventLoggerAction(final Model model, final SelectionModel selectionModel)

{

this.model = model;

this.selectionModel = selectionModel;

}

@Override

public void execute(final TrackMate trackmate)

{

logger.log("Launching a new event logger...");

final EventLoggerView view = new EventLoggerView(model, selectionModel);

view.render();

logger.log(" Done.\n");

}

@Override

public void setLogger(final Logger logger)

{

this.logger = logger;

}

}

14.4 Wrapping up.

And here are the results:

134

You can imagine a lot of applications for Actions. Since they give you access to most of
the plugin context, you can basically plug anything there. The one limitation is that it does
not fit perfectly in the existing GUI: actions just appear as items in a drop-down list. But in
most cases it does not ma�er much. Actions are very useful to quickly gra� a piece of new
functionality on TrackMate.

This concludes this tutorial, which was pre�y quick and simple. This is unfortunately the
last time in this series that things are simple and short. The next tutorial will be about im-
plementing a custom detector, which will turn to be quite complicated for apparently wrong
reasons.

15. How to write your own detection algorithm for TrackMate.

15.1 Introduction.

Welcome to the most useful and also unfortunately the hardest part in this tutorial series on
how to extend TrackMate with custom modules.

The detection algorithms in TrackMate are basic: they are all based or approximated from
the Laplacian of Gaussian technique. They work well even in the presence of noise for round
or spherical and well separated objects. As soon as you move away from these requirements,
you will feel the need to implement your own custom detector.

This is the subject of this tutorial, which will appear denser than the previous ones. Not
because implementing a custom detection algorithm is di�icult. It is di�icult, even very dif-
ficult if you are not familiar with the ImgLib2 library. But we will skip this di�iculty here by

135

http://imagej.net/TrackMate
http://imagej.net/wikipedia:Blob detection#The_Laplacian_of_Gaussian
http://imagej.net/ImgLib2

not making a true detector, but just a dummy one that returns detections irrespective of the
image content. This involved task is le� to your Java and ImgLib2 skills.

No, this tutorial will be di�icult because contrary to the previous ones, we need to do a lot
of work even for just a dummy detector. The reason for this comes from our desire to have a
nice and tidy integration in TrackMate. The custom detector we will write will be a first-class
citizen of TrackMate, and this means several things: Not only it must be able to provide a
proper detection, but it must also

• o�er the user some configuration options, in a nice GUI;
• check that the user entered meaningful detection parameters;
• enable the saving and loading of these parameters to XML.

We did not have to care when implementing a custom action, but now we do. Let’s get started
with the easiest part, the detection algorithm.

15.2 The SpotDetector interface.

15.2.1 A detector instance operates on a single frame.

The detection part itself is implemented in a class that implements the SpotDetector interface.
Browsing there, you will see that it is just a specialization of an output algorithm from ImgLib2.
We are required to spit out a List<Spot> that represents the list of detection (one Spot per
detection) for a single frame. This is important: an instance of your detector is supposed to
work on a single frame. TrackMate will generate as many instances of the detector per frame
it has to operate on. This facilitates development, but also multithreading: TrackMate fires
one detector per thread it has access to, and this is done without you having to worry about
it. TrackMate will bundle the outputs of all detectors in a thread-safe manner.

It is the work of the detector factory to provide each instance with the data required to
segment a specific frame. But we will see how this is done below.

15.2.2 A SpotDetector can be multithreaded.

So TrackMate o�ers you a turnkey multithreaded solution: If you have a computer with 12
cores and 50 frames to segment, TrackMate will fire 12 SpotDetectors at once and process
them concurrently.

But let’s say that you have 24 cores and only 6 frames to segment. You can exploit this situa-
tion by le�ing your concrete instance of SpotDetector implement the ImgLib2 MultiThreaded
interface. In that case, TrackMate will still fire 6 SpotDetector instances (one for each frame),
but will allocate 4 threads to each instance, and get an extra kick in speed.

Of course, you have to devise a clever multithreading strategy to operate concurrently on
a single frame. For instance, you could divide the image into several blocks and process
them in parallel. Or delegate to sub-algorithms that are multithreaded; check for instance
the LogDetector code.

136

http://imagej.net/How to write custom actions for TrackMate
https://github.com/fiji/TrackMate/blob/master/src/main/java/fiji/plugin/trackmate/detection/SpotDetector.java
http://imagej.net/ImgLib2
https://github.com/imglib/imglib/blob/master/algorithms/core/src/main/java/net/imglib2/algorithm/MultiThreaded.java
https://github.com/fiji/TrackMate/blob/master/src/main/java/fiji/plugin/trackmate/detection/LogDetector.java

15.2.3 Detection results are represented by Spots.

Spots are used to represent detection results: one detection = one spot. By convention, a
detection algorithm must provide at least the following numerical feature to each spot:

• The X, Y, Z coordinates, obviously. What is not that obvious is that TrackMate uses only
image coordinates. This means that if your image has a physical calibration in µm (e.g.
0.2 µm/pixels in X,Y), the spot coordinates must be in µm2. If you have just a 2D image,
use 0 for the Z position, but it must not be omi�ed.

• A quality value, that reflects the quality of the detection itself. It must be a real, positive
number, that reflects how confident your detection algorithm is that the found detection
is not spurious. The larger the more confident.

• The spot radius, representing in physical units, the approximate size of the image struc-
ture that was detected. TrackMate default detectors do not have an automatic size
detection feature, so they ask the user what is the most likely size of the structures they
should detect, tune themselves to this size, and set all the radius of the detections to be
the one entered by the user.

Any omission will trigger errors at runtime.

15.2.4 A dummy detector that returns spiraling spots.

For this tutorial we will build a dummy detector, that actually fully ignores the image content
and just create spots that seem to spiral out from the center of the image. A real detector
would require you to hone your ImgLib2 skills; check the LogDetector code for an example.

Below is the source code for the dummy detector. You can also find it online. Let’s comment
a bit on this:

The type parameter < T extends RealType< T > & NativeType< T ». Instances of SpotDe-
tector are parametrized with a generic type T that must extends RealType and NativeType.
These are the bounds for all the scalar types based on native types, such us float, int, byte,
etc. This is the type of the image data we are to operate on.

The constructor. Since the SpotDetector interface gives li�le constraint on inputs, all of
them must be provided at construction time in the constructor. Keep in mind that we have
one instance per frame, so we must know what frame we are to process.

Normal detectors would be fed with a reference to the image data for this very single frame.
Here we do not care for image content, so it is not there. But we will speak of this more when
discussing the factory.

2The reason behind this is that TrackMate wants to break free of the source data. Keeping all the coordinates
in physical units allow exchanging and working on results without having to keep a reference to the original
image.

137

https://github.com/fiji/TrackMate/blob/master/src/main/java/fiji/plugin/trackmate/Spot.java
http://imagej.net/ImgLib2
https://github.com/fiji/TrackMate/blob/master/src/main/java/fiji/plugin/trackmate/detection/LogDetector.java
https://github.com/fiji/TrackMate-examples/blob/master/src/main/java/plugin/trackmate/examples/detector/SpiralDummyDetector.java
https://github.com/imglib/imglib/blob/master/core/src/main/java/net/imglib2/type/numeric/RealType.java
https://github.com/imglib/imglib/blob/master/core/src/main/java/net/imglib2/type/NativeType.java
https://github.com/fiji/TrackMate/blob/master/src/main/java/fiji/plugin/trackmate/detection/SpotDetector.java

Because TrackMate can also be tuned to operate only on a ROI, the instance receives an
Interval that represent the bounding box in pixel coordinates of the ROI the user selected.
Here, we just use it to center the spirals.

Because we must store the physical coordinates in the spots we create, we need a calibration
array to convert pixel coordinates to physical ones. That is the role of the double[] calibra-

tion array, and it contains the pixel sizes along X, Y and Z.

The Algorithm methods. checkInput() checks that the parameters passed are OK prior
to processing, and returns false if they are not. process() does all the hard work, and return
false if something goes wrong. If any of these two methods returns false, you are expected to
document what went wrong in an error message that can be retrieved through getErrorMes-

sage().

The OutputAlgorithm method. This one just asks us to return the results as a list of
spots. It must be a field of your instance, that is ideally instantiated and built in the pro-

cess() method. The getResult() method exposes this list.

The Benchmark method. Well, we just want to know how much time it took. Note that
all of these are the usual suspects of an ImgLib2 generic algorithm, so they should not confuse
you.

The code itself. Here is the code listing:

package plugin.trackmate.examples.detector;

import java.util.ArrayList;

import java.util.List;

import net.imglib2.Interval;

import net.imglib2.type.NativeType;

import net.imglib2.type.numeric.RealType;

import fiji.plugin.trackmate.Spot;

import fiji.plugin.trackmate.detection.SpotDetector;

public class SpiralDummyDetector< T extends RealType< T > & NativeType< T >> implements

↪→ SpotDetector< T >

{

private static final double RADIAL_SPEED = 3d; // pixels per frame

// radians per frame

private static final double ANGULAR_SPEED = Math.PI / 10;

// in image units

private static final double SPOT_RADIUS = 1d;

138

https://github.com/imglib/imglib/blob/master/core/src/main/java/net/imglib2/Interval.java

/** The width if the ROI. */

private final long width;

/** The height if the ROI. */

private final long height;

/** The X coordinates of the ROI. */

private final long xstart;

/** The Y coordinates of the ROI. */

private final long ystart;

/** The pixel sizes in the 3 dimensions. */

private final double[] calibration;

/** The frame we operate in. */

private final int frame;

/** Holder for the results of detection. */

private List< Spot > spots;

/** Error message holder. */

private String errorMessage;

/** Holder for the processing time. */

private long processingTime;

/*

* CONSTRUCTOR

*/

public SpiralDummyDetector(final Interval interval, final double[] calibration, final int

↪→ frame)

{

// Take the ROI box from the interval parameter.

this.width = interval.dimension(0);

this.height = interval.dimension(1);

this.xstart = interval.min(0);

this.ystart = interval.min(1);

// We will need the calibration to convert to physical units.

this.calibration = calibration;

// We need to know what frame we are in.

this.frame = frame;

}

/*

* METHODS

*/

139

@Override

public List< Spot > getResult()

{

return spots;

}

@Override

public boolean checkInput()

{

// Nothing to test, it’s all good.

return true;

}

@Override

public boolean process()

{

final long start = System.currentTimeMillis();

spots = new ArrayList< Spot >();

/*

* This dummy detector creates spots that spiral out from the center of

* the specified ROI. It spits a new spiral every 10 frames.

*/

final int x0 = (int) (width / 2 + xstart);

final int y0 = (int) (height / 2 + ystart);

int t = frame;

int nspiral = 0;

while (t >= 0)

{

final double r = t * RADIAL_SPEED;

final double phi0 = nspiral * Math.PI / 4;

final double phi = t * ANGULAR_SPEED + phi0;

// Spot in pixel coordinates.

final double x = x0 + r * Math.cos(phi);

final double y = y0 + r * Math.sin(phi);

// But we want to create spots in image coordinates:

final double xpos = x * calibration[0];

final double ypos = y * calibration[1];

final double zpos = 0d;

// Create the spot.

final Spot spot = new Spot(xpos, ypos, zpos, SPOT_RADIUS, 1d / (nspiral + 1d));

spots.add(spot);

// Loop to another spiral.

140

t = t - 10;

nspiral++;

}

final long end = System.currentTimeMillis();

this.processingTime = end - start;

return true;

}

@Override

public String getErrorMessage()

{

/*

* If something wrong happens while you #checkInput() or #process(),

* state it in the errorMessage field.

*/

return errorMessage;

}

@Override

public long getProcessingTime()

{

return processingTime;

}

}

And that’s about it. Now for something completely di�erent, we move to the factory class
that instantiates this detector.

15.3 The SpotDetectorFactory interface.

The SpotDetectorFactory concrete implementation is the class that needs to be annotated
with the SciJava annotation. For instance:

@Plugin(type = SpotDetectorFactory.class)

public class SpiralDummyDetectorFactory< T extends RealType< T > & NativeType< T >>

↪→ implements SpotDetectorFactory< T >

Note that we have to deal with the same type parameter than for the SpotDetector instance.
We skip all the TrackMateModule methods we have seen over and over in this tutorial series.
There is nothing new here, they all have the same role. The di�icult and interesting parts are
linked to what we introduced above. Basically we need to provide a logic for passing the raw
image data, for saving/loading to XML, for querying the user for parameters, and checking
them.

15.3.1 Ge�ing the raw image data.

Since the TrackMateModule concrete implementation must have a blank constructor, there
must be another way to pass required arguments to factories. For SpotDetector factories, this

141

http://imagej.net/SciJava

role is played by the setTarget method:

@Override

public boolean setTarget(ImgPlus< T > img, Map< String, Object > settings)

The raw image data is returned as an ImgPlus, that can be seen as the ImgLib2 equivalent
of ImageJ1 ImagePlus. It contains the pixel data for all available dimensions (all X, Y, Z, C,
T if any), plus the spatial calibration we need to operate in physical units. The concrete fac-
tory must be able to extract from this ImgPlus the data useful for the SpotDetectors it will
instantiate, keeping in mind that each SpotDetector operates on one frame.

The second argument is the se�ings map for this specific detector. It takes the shape of
a map with string keys and object values, that can be cast to whatever relevant class. The
concrete factory must be able to check that all the required parameters are there, and have a
valid class, and to feed to the SpotDetector instances. We will see below that the user provides
them through a configuration panel.

15.3.2 Ge�ing detection parameters through a configuration panel.

For a proper TrackMate integration, we need to provide a means for users to tune the detector
they chose. And since TrackMate was built first to be used through a GUI, we need to create
a GUI element for this task: a configuration panel. The class that does that in TrackMate is
ConfigurationPanel. It is an abstract class that extends JPanel, and that adds two methods to
display a se�ings map and return it.

Each SpotDetectorFactory has its own configuration panel, which must be instantiated and
returned through:

@Override

public ConfigurationPanel getDetectorConfigurationPanel(Settings settings, Model model)

The GUI panel has access to the model and se�ings objects, and can therefore display some
relevant information.

This is a di�icult part because you have to write a GUI element. GUIs are excruciating long
and painfully hard to write, at least if you want to get them right. Check the configuration
panel of the LoG detector for an example.

15.3.3 Checking the validity of parameters.

There is a layer of methods that allows checking for the parameter validity. Normally you
don’t need to, since you write the configuration panel for the detector you also develop, but I
have found this to be useful to find errors early. Parameter checking is done a�er user edition,
loading and saving.

Three methods are at play:

public Map< String, Object > getDefaultSettings();

public boolean checkSettings(Map< String, Object > settings);

public String getErrorMessage();

The getDefaultSettings() method return a new se�ings map initialized with default val-
ues. It must contain all the required parameter keys, and nothing more. The checkSettings()

142

https://github.com/imglib/imglib/blob/master/meta/src/main/java/net/imglib2/meta/ImgPlus.java
http://imagej.net/ImgLib2
https://github.com/imagej/ImageJA/blob/master/src/main/java/ij/ImagePlus.java
https://github.com/fiji/TrackMate/blob/master/src/main/java/fiji/plugin/trackmate/gui/ConfigurationPanel.java
https://github.com/fiji/TrackMate/blob/master/src/main/java/fiji/plugin/trackmate/gui/panels/detector/LogDetectorConfigurationPanel.java

method does the actual parameter checking. It must check that all the required parameters
are there, that they have the right class, and that there is no spurious mapping in the map.
Should any of these defects be found, it returns false. Finally, getErrorMessage() should re-
turn a meaningful error message if the check failed.

15.3.4 Saving to and loading from XML.

TrackMate tries to save as much information as possible when saving to XML. The save file
should contain at the very least the tracking results, but it should also include the parame-
ters that help creating these results. The detection algorithm parameters should therefore be
included.

You have to provide the means to save and load this parameters, since they are specific to
the detector you write. This is done through the two methods:

public boolean marshall(Map< String, Object > settings, Element element);

public boolean unmarshall(Element element, Map< String, Object > settings);

Marshalling. Marshalling is the action of serializing a java object to XML. TrackMate relies
on the JDom library to do so, and it greatly simplifies the task.

The se�ings map that the marshall method receives is the se�ings map to save. You can
safely assume it has been successfully checked. The element parameter is a JDom element, and
it must contain eveything you want to save from the detector, as a�ribute or child elements.
Here is what you must put in it:

• You must at the very least set an a�ribute that has for key "DETECTOR_NAME" and value
the SpotDetectorFactory key (the one you get with the getKey()) method. This will be
used in turn when loading from XML, to retrieve the right detector you used.

• If something goes wrong when saving, then the marshall method must return false,
and you must provide a meaningful error message for the getErrorMessage() method.

• Everything else is pre�y much up to you. There is a helper method in IOUtils that you
can use to serialize single parameters. Check the LogDetectorFactory marshall method
for an example.

Unmarshalling. Unmarshalling is just the other way around. You get a map that you must
first clear, then build from the JDom element specified. You can safely assume that the XML
element you get was built from the marshall method of the same SpotDetectorFactory. Track-
Mate makes sure the right unmarshall method is called.

There are a few help methods around to help you with reading from XML. For instance,
check all the read*Attribute of the IOUtils class. It is also a good idea to call the checkSettings

method with the map you just built.
Check again the LogDetectorFactory unmarshall method for an example.

143

http://www.jdom.org/
http://www.jdom.org/docs/apidocs/org/jdom2/Element.html
https://github.com/fiji/TrackMate/blob/master/src/main/java/fiji/plugin/trackmate/detection/DetectorKeys.java#L14
https://github.com/fiji/TrackMate/blob/master/src/main/java/fiji/plugin/trackmate/io/IOUtils.java#L383
https://github.com/fiji/TrackMate/blob/master/src/main/java/fiji/plugin/trackmate/detection/LogDetectorFactory.java#L161
https://github.com/fiji/TrackMate/blob/master/src/main/java/fiji/plugin/trackmate/io/IOUtils.java
https://github.com/fiji/TrackMate/blob/master/src/main/java/fiji/plugin/trackmate/detection/LogDetectorFactory.java#L173

15.3.5 Instantiating spot detectors.

And finally, the method that gives its name to this factory:

public SpotDetector< T > getDetector(Interval interval, int frame)

This will be called repeatedly by TrackMate to generate as many SpotDetector instances
as there is frames in the raw data to segment. The two parameters specify the ROI the user
wants to operate on as an Imglib2 interval, and the target frame. So you need to process and
bundle:

• this interval and this frame;
• the raw image data and se�ings map received from the setTarget method in the param-

eters required to instantiate a new SpotDetector.

Because the dummy example we use in this tutorial is not very enlightening, we copy here the
code from the LogDetectorFactory. It shows how to extract parameters from a se�ings map,
and how to access the relevant data frame in a possibly 5D image:

@Override

public SpotDetector< T > getDetector(final Interval interval, final int frame)

{

final double radius = (Double) settings.get(KEY_RADIUS);

final double threshold = (Double) settings.get(KEY_THRESHOLD);

final boolean doMedian = (Boolean) settings.get(KEY_DO_MEDIAN_FILTERING);

final boolean doSubpixel = (Boolean) settings.get(KEY_DO_SUBPIXEL_LOCALIZATION);

final double[] calibration = TMUtils.getSpatialCalibration(img);

RandomAccessible< T > imFrame;

final int cDim = TMUtils.findCAxisIndex(img);

if (cDim < 0)

{

imFrame = img;

}

else

{

// In ImgLib2, dimensions are 0-based.

final int channel = (Integer) settings.get(KEY_TARGET_CHANNEL) - 1;

imFrame = Views.hyperSlice(img, cDim, channel);

}

int timeDim = TMUtils.findTAxisIndex(img);

if (timeDim >= 0)

{

if (cDim >= 0 && timeDim > cDim)

{

timeDim--;

}

imFrame = Views.hyperSlice(imFrame, timeDim, frame);

}

144

https://github.com/imglib/imglib/blob/master/core/src/main/java/net/imglib2/Interval.java

final LogDetector< T > detector = new LogDetector< T >(imFrame, interval, calibration,

↪→ radius, threshold, doSubpixel, doMedian);

detector.setNumThreads(1);

return detector;

}

15.3.6 The code for the dummy spiral generator factory.

And here is the full code for this tutorial example. It is the ultimate simplification of a Spot-
DetectorFactory, and was careful to strip anything useful by first ignoring the image content,
second by not using any parameter. You can also find it online.

package plugin.trackmate.examples.detector;

import ij.ImageJ;

import ij.ImagePlus;

import java.util.Collections;

import java.util.Map;

import javax.swing.ImageIcon;

import net.imglib2.Interval;

import net.imglib2.meta.ImgPlus;

import net.imglib2.type.NativeType;

import net.imglib2.type.numeric.RealType;

import org.jdom2.Element;

import org.scijava.plugin.Plugin;

import fiji.plugin.trackmate.Model;

import fiji.plugin.trackmate.Settings;

import fiji.plugin.trackmate.TrackMatePlugIn_;

import fiji.plugin.trackmate.detection.SpotDetector;

import fiji.plugin.trackmate.detection.SpotDetectorFactory;

import fiji.plugin.trackmate.gui.ConfigurationPanel;

import fiji.plugin.trackmate.util.TMUtils;

@Plugin(type = SpotDetectorFactory.class)

public class SpiralDummyDetectorFactory< T extends RealType< T > & NativeType< T >>

↪→ implements SpotDetectorFactory< T >

{

static final String INFO_TEXT = "<html>This is a dummy detector that creates spirals made

↪→ of spots emerging from the center of the ROI. The actual image content is not used

↪→ .</html>";

private static final String KEY = "DUMMY_DETECTOR_SPIRAL";

static final String NAME = "Dummy detector in spirals";

145

https://github.com/fiji/TrackMate-examples/blob/master/src/main/java/plugin/trackmate/examples/detector/SpiralDummyDetectorFactory.java

private double[] calibration;

private String errorMessage;

@Override

public String getInfoText()

{

return INFO_TEXT;

}

@Override

public ImageIcon getIcon()

{

return null;

}

@Override

public String getKey()

{

return KEY;

}

@Override

public String getName()

{

return NAME;

}

@Override

public SpotDetector< T > getDetector(final Interval interval, final int frame)

{

return new SpiralDummyDetector< T >(interval, calibration, frame);

}

@Override

public boolean setTarget(final ImgPlus< T > img, final Map< String, Object > settings)

{

/*

* Well, we do not care for the image at all. We just need to get the

* physical calibration and there is a helper method for that.

*/

this.calibration = TMUtils.getSpatialCalibration(img);

// True means that the settings map is OK.

return true;

}

@Override

public String getErrorMessage()

{

146

/*

* If something is not right when calling #setTarget (i.e. the settings

* maps is not right), this is how we get an error message.

*/

return errorMessage;

}

@Override

public boolean marshall(final Map< String, Object > settings, final Element element)

{

/*

* This where you save the settings map to a JDom element. Since we do

* not have parameters, we have nothing to do.

*/

return true;

}

@Override

public boolean unmarshall(final Element element, final Map< String, Object > settings)

{

/*

* The same goes for loading: there is nothing to load.

*/

return true;

}

@Override

public ConfigurationPanel getDetectorConfigurationPanel(final Settings settings, final

↪→ Model model)

{

// We return a simple configuration panel.

return new DummyDetectorSpiralConfigurationPanel();

}

@Override

public Map< String, Object > getDefaultSettings()

{

/*

* We just have to return a new empty map.

*/

return Collections.emptyMap();

}

@Override

public boolean checkSettings(final Map< String, Object > settings)

{

/*

* Since we have no settings, we just have to test that we received the

* empty map. Otherwise we generate an error.

147

*/

if (settings.isEmpty()) { return true; }

errorMessage = "Expected the settings map to be empty, but it was not: "+settings+’\n’;

return false;

}

}

15.4 Wrapping up.

This was a lot of information and a lot of coding for a single piece of functionality. But all of
these painful methods make your detector a first-class citizen of TrackMate. "Native" detectors
use the exact same logic. Here is what our dummy example looks, a�er tracking the spots this
it creates.

16. How to write your own particle-linking algorithm for
TrackMate.

16.1 Introduction.

This last part on particle-linking modules concludes the series of tutorials on extending Track-
Mate. The most di�icult modules to create are spot detectors, which was the subject of the
previous section. Particle-linking modules, or trackers, are a li�le bit less complicated. How-
ever, you still need to understand how we store and manipulate links in TrackMate, and this
implies very briefly introducing mathematical graphs.

16.2 Simple, undirected graphs.

TrackMate stores the results of the detection step as spots in a SpotCollection. The tracking
results are mainly links between these spots so we needed a structure to hold them. We went
for the most general one, and picked a mathematical graph.

Mathematical graphs are mathematical structures that hold objects (vertices) and links be-
tween them (edges, we will use the two terms interchangeably). TrackMate relies specifically
on a specialization: it uses an undirected, simple weighted graph.

148

http://fiji.sc/javadoc/fiji/plugin/trackmate/SpotCollection.html
http://en.wikipedia.org/wiki/Graph_(mathematics)

• Undirected means that a link between A and B is the same as a link between B and
A. There is no specific direction and it cannot be exploited. However, you will see that
the API o�ers specific tools that can fake a direction. Indeed, since we deal mainly
with time-lapse data, we would like to make it possible to say that we iterate a graph
following the time direction.

• Simple is not related to the e�orts that must be made to grasp this mathematical field,
but to the fact that there can be only 1 or no link between two spots, and that we do not
authorize a link going from one spots to this same spot (no loop).

• Weighted means that each link has a numerical value, called weight, associated to it.
We use it just to store some of the results of the tracking algorithm, but it has no real
impact on TrackMate.

This restrictions do not harm the generality of what you can represent in Life Science with
this. You can still have the classical links you find in typical time-lapse experiment:

• Following a single object over time:

A0 - A1 - A2 - A3 - ...

• A cell division:

A0 - A1 -+- B2 - B3 - ...

|

+- C2 - C3 - ...

• But also anything fusions, tripolar divisions, and a mix of everything in the same model.

16.3 Graphs in TrackMate.

On a side note, this is important if you plan to build analysis tools for TrackMate results.
TrackMate philosophy is to o�er managing the most general case (when it comes to linking),
but your analysis tools might require special use cases.

• For instance, when you are tracking vesicles that do not fuse nor split, you just have a
linear data structure (an array of objects for each particle).

• When you follow a cell lineage, you have a rooted mathematical tree.
• And if all cells divide in two daughters, then you have a rooted binary tree.

They all are specialization of the simple graph, and o�er special tools that can be very useful.
But TrackMate assumes none of these specializations. It stores and manipulate a graph.

Since we are Java coders, we use a Java library to manipulate these graphs, and for this we
rely on the excellent JGraphT library. Why a graph? Why not storing a list of successors and
a list of predecessors for each spot? Or directly have a track object that would save some time
on determining what are the tracks? Well, because a graph is very handy and simple to use
when creating links. When you will write your own tracker, and found a link you want to
add the model, the only thing you have to do is: graph.addEdge(A, B). You don’t have to care

149

http://en.wikipedia.org/wiki/Tree_(data_structure)
http://en.wikipedia.org/wiki/Binary_tree
http://jgrapht.org/

whether A belongs to a track and if yes to what track, you don’t need to see the whole graph
globally, you can just focus on the local link. Adding a link in the code is always very simple.

Then of course, you still need a way to know how many tracks are there in the model, and
what are they made of. But this is the job of TrackMate. It o�ers the API that hides the graph
and deals in track. This is done via a component of the model, the TrackModel. But in the
tracker we will not use this. We will be given a simple graph, and will have to flesh it out with
spots and links between these spots. When the tracker completes, TrackMate will build and
maintains a list of tracks from it.

The price to pay for this simplicity is that - when tracking - it is not trivial to get the global
information. For instance, it is easy to query whether a link exists between two spots, but the
graph does not see the tracks directly. If you need them, you either have to build them from
the graph, either have to maintain them locally. But more on this below.

16.4 Particle-linking algorithms in TrackMate.

We used the term tracker since the beginning of this series, but the correct term for what we
will build now is particle linking algorithm. Our particles are the visible spots resulting from
the detection step, and the links will be the edges of the graph. A tracker could be defined
as the full application that combines a particle detection algorithm with a particle linking
algorithm.

In TrackMate, particle linking algorithms implements the SpotTracker interface. It is very
simple. As explained in the docs, a SpotTracker algorithm is simply expected to create a new
SimpleWeightedGraph from the SpotCollection given (using of course only the visible spots).
We use a simple weighted graph:

• Though the weights themselves are not used for subsequent steps, it is suggested to use
edge weight to report the cost of a link.

• The graph is undirected, however, some link direction can be retrieved later on using the
Spot.FRAME feature. The SpotTracker implementation does not have to deal with this;
only undirected edges are created.

• Several links between two spots are not permi�ed.
• A link with the same spot for source and target is not allowed.
• A link with the source spot and the target spot in the same frame is not allowed. This

must be enforced by implementations.

There is also an extra method to pass a instance of Logger to log the tracking process pro-
gresses. That’s all.

16.5 A dummy example: drunken cell divisions.

There is already an example online that does random link creation. Let’s do something else,
and build a tracker that links a spot to any two spots in the next frame (if they exist) as if it
would go cell division as fast as it can.

Creating the class yields the following skeleton:

150

http://fiji.sc/javadoc/fiji/plugin/trackmate/TrackModel.html
https://github.com/fiji/TrackMate/blob/master/src/main/java/fiji/plugin/trackmate/tracking/SpotTracker.java
http://jgrapht.org/javadoc/index.html?org/jgrapht/graph/SimpleWeightedGraph.html
http://fiji.sc/javadoc/fiji/plugin/trackmate/Logger.html
https://github.com/fiji/TrackMate-examples/blob/master/src/main/java/plugin/trackmate/examples/tracker/RandomLinkingTracker.java

package plugin.trackmate.examples.tracker;

import org.jgrapht.graph.DefaultWeightedEdge;

import org.jgrapht.graph.SimpleWeightedGraph;

import fiji.plugin.trackmate.Logger;

import fiji.plugin.trackmate.Spot;

import fiji.plugin.trackmate.tracking.SpotTracker;

public class DrunkenCellDivisionTracker implements SpotTracker

{

private SimpleWeightedGraph< Spot, DefaultWeightedEdge > graph;

private String errorMessage;

private Logger logger = Logger.VOID_LOGGER;

@Override

public SimpleWeightedGraph< Spot, DefaultWeightedEdge > getResult()

{

return graph;

}

@Override

public boolean checkInput()

{

return true;

}

@Override

public boolean process()

{

graph = new SimpleWeightedGraph<Spot,DefaultWeightedEdge>(DefaultWeightedEdge.class);

return true;

}

@Override

public String getErrorMessage()

{

return errorMessage;

}

@Override

public void setNumThreads()

{

// Ignored. We do not multithreading here.

}

151

@Override

public void setNumThreads(final int numThreads)

{

// Ignored.

}

@Override

public int getNumThreads()

{

return 1;

}

@Override

public void setLogger(final Logger logger)

{

// Just store the instance for later use.

this.logger = logger;

}

}

Parameters need to be passed to the class via its constructor. As for detectors, the factory
we will build later will be in charge of ge�ing these parameters. Of course, the most important
one is the SpotCollection to track. In our case it will be the only one, as our dummy tracker
do not have any se�ings. So we can have a constructor like this:

public DrunkenCellDivisionTracker(final SpotCollection spots)

{

this.spots = spots;

}

then we exploit the SpotCollection in the process() method. Our strategy here is to loop
over all the frames that have a content, and link each spot to two spots in the next frame -
wherever they are - until there is either no source spots or no target spots le�. The method
looks like this:

@Override

public boolean process()

{

graph = new SimpleWeightedGraph<Spot,DefaultWeightedEdge>(DefaultWeightedEdge.class);

// Get the frames in order.

final NavigableSet< Integer > frames = spots.keySet();

final Iterator< Integer > frameIterator = frames.iterator();

// Get all the visible spots in the first frame, and put them in a new

// collection.

final Iterable< Spot > iterable = spots.iterable(frameIterator.next(), true);

final Collection< Spot > sourceSpots = new ArrayList< Spot >();

for (final Spot spot : iterable)

{

sourceSpots.add(spot);

152

}

// Loop over frames, and link the source spots to spots in the next

// frame.

double progress = 0;

while (frameIterator.hasNext())

{

final Integer frame = frameIterator.next();

final Iterator< Spot > it = spots.iterator(frame, true);

SOURCE_LOOP: for (final Spot source : sourceSpots)

{

/*

* Add the source to the graph, if it is not already done (doing

* it several time is not a problem: it’s backed up by a Set).

*/

graph.addVertex(source);

// Finds 2 targets.

for (int i = 0; i < 2; i++)

{

if (it.hasNext())

{

final Spot target = it.next();

// You must add it as vertex before creating the link.

graph.addVertex(target);

// This is how we create a link.

final DefaultWeightedEdge edge = graph.addEdge(source, target);

// We get the edge back, and set its weight through:

if (null != edge)

{

graph.setEdgeWeight(edge, 3.14);

/*

* Edge can be null if a link already exists between

* the two spots.

*/

}

}

else

{

break SOURCE_LOOP;

}

}

}

// Regenerate source list for next frame.

sourceSpots.clear();

for (final Spot spot : spots.iterable(frame, true))

{

sourceSpots.add(spot);

}

153

progress += 1;

logger.setProgress(progress / frames.size());

}

return true;

}

So it’s not really complicated. Which is good, because the complicated part, completely
omi�ed here, is the one where you have to determine what links to create. This is where you
Science should kick in.

16.6 The factory class.

Now that we have the clever part of the code (the one that does the actual linking), we need
to deal with TrackMate integration. Like for the detection modules, this is done via a factory
class, named SpotTrackerFactory. It is completely equivalent to the SpotDetectorFactory we
saw in the previous tutorial, so I won’t detail the common methods again.

The methods specific to the tracker are:

• public SpotTracker create(final SpotCollection spots, final Map< String, Object >

↪→ settings);

This method instantiates the actual tracker class. You can see that it received the Spot-
Collection and a se�ings map. This method is expected to unpack this map and extract
the actual parameters need to instantiate the tracker. Note that contrary to the detector
factory, TrackMate calls this method only once for a tracking process. It does not gen-
erate a tracker per frame. So it is actually simpler than for detection: a tracker instance
is expected to solve the tracking problem for the whole model at once. Therefore, there
is no need for a setTarget() method, like previously.

• public ConfigurationPanel getTrackerConfigurationPanel(final Model model);

This method should generate a GUI panel to request tracking parameters from the user.
Completely similar to the detection modules.

• marshall and unmarshall. Save to and retrieve from XML, like previously.

• public String toString(final Map< String, Object > sm);

Used to pre�y-print the se�ings map specific to this tracker.

The rest is classic. Here is what it looks like for our tracker:

TrackMate recognize there were two tracks. You did not have to worry about that.

154

https://github.com/fiji/TrackMate/blob/master/src/main/java/fiji/plugin/trackmate/tracking/SpotTrackerFactory.java
http://imagej.net/How to write your own detection algorithm for TrackMate

16.7 Wrapping up.

The full code, as well as the code for another tracker example can be found on github. And
this concludes flatly our series of tutorials on how to extend TrackMate. Go forth now, and
bend it to your needs; it is your tool.

155

https://github.com/fiji/TrackMate-examples/tree/master/src/main/java/plugin/trackmate/examples/tracker

References
[1] Lindeberg, T. Feature detection with automatic scale selection. International Journal of Computer Vision 30 (2)

(1998) pp 77–116.

[2] Lowe, D.G. Distinctive image features from scale-invariant keypoints, International Journal of Computer Vision,
60, 2 (2004), pp. 91-110.

[3] Otsu, N., A threshold selection method from gray-level histograms, in IEEE Transactions on Systems, Man, and
Cybernetics, vol. 9, no. 1, pp. 62-66, Jan. 1979.

[4] Jaqaman, K. et al., Robust single-particle tracking in live-cell time-lapse sequences, Nat Methods. 2008
Aug;5(8):695-702.

[5] Crocker and Grier. Methods of Digital Video Microscopy for Colloidal Studies, J Colloid Interf Sci (1996) vol.
179 (1) pp. 298-310.

[6] Bentley, J. L. Multidimensional binary search trees used for associative searching, Communications of the ACM,
vol. 18, no 9, 1975, p. 509-517.

[7] Sage, D. et al., Automatic tracking of Individual fluorescence Particles: Application to the study of chromosome
dynamics, IEEE Transactions on Image Processing, vol. 14, no. 9, pp. 1372-1383, September 2005.

[8] Munkres, J. Algorithms for the assignment and transportation problems, Journal of the Society for Industrial
and Applied Mathematics, 5(1):32–38, March 1957.

[9] Chenouard et al., Objective comparison of particle tracking methods, Nature Methods, 2014.

[10] Krull, A., et al., A divide and conquer strategy for the maximum likelihood localization of low intensity objects,
Opt. Express 22, 210-228 (2014)

156

 http://www.nature.com/nmeth/journal/v5/n8/full/nmeth.1237.html
http://physics.nyu.edu/grierlab/methods3c/methods3c.pdf
http://bigwww.epfl.ch/publications/sage0501.pdf
http://www.nature.com/nmeth/journal/v11/n3/full/nmeth.2808.html

	Tutorials.
	Using TrackMate for automated single-particle tracking.
	Introduction.
	The test image.
	Starting TrackMate.
	The start panel.
	Choosing a detector.
	The detector configuration panel.
	The detection process.
	Initial spot filtering.
	Selecting a view.
	Spot filtering.
	Selecting a simple tracker.
	Configuring the simple LAP tracker.
	Our first tracking results.
	Configuring a not so simple tracker.
	Filtering tracks.
	The end or so.
	Wrapping up.

	Manual editing of tracks using TrackMate.
	Introduction.
	The test image: Development of a C.elegans embryo.
	Generating a sub-optimal segmentation.
	Generating irrelevant tracks.
	Launching TrackScheme.
	TrackScheme in a nutshell.
	Getting rid of bad tracks.
	Spot editing with the HyperStack Displayer.
	With the mouse.
	With the keyboard.

	Adding missed spots.
	Editing tracks: creating links.
	By drag & drop.
	Using selection and right-click menu.
	Creating several links at once.

	Editing tracks: deleting links.
	Wrapping up.

	Manual and semi-automated tracking with TrackMate.
	Setting up.
	Creating spots one by one.
	Create and removing single links.
	The auto-linking mode.
	Tracks are updated live.
	Track and spot features are updated live.
	Step-wise time browsing for sparse annotations.
	The semi-automatic tracking tool.
	Keyboard shortcuts for manual editing of tracks in the main view.

	Technical documentation.
	TrackScheme manual.
	Moving around in TrackScheme.
	Configuring TrackScheme look.
	Exporting TrackScheme display.
	Managing a selection in TrackScheme.
	TrackScheme info-pane and feature plots.
	Editing tracks with TrackScheme.
	Linking spots with the popup menu item.
	Triggering re-layout and style refresh.
	Linking spots with drag and drop.
	Removing spots and links.
	Editing track names and imposing track order.
	Editing spot names and imposing branch order.

	Description of TrackMate algorithms.
	Spot detectors.
	Spot features generated by the spot detectors.
	Laplacian of Gaussian particle detection (LoG detector).
	Difference of Gaussian particle detection (DoG detector).
	Downsample LoG detector.
	Handling the detection of large images with the Block LoG detector.

	Spot analyzers.
	Mean, Median, Min, Max, Total intensity and its Standard Deviation.
	Contrast & Signal/Noise ratio.
	Estimated diameter.

	Spot trackers or particle-linking algorithms.
	LAP trackers.
	Linear motion tracker.

	Particle-linking algorithms accuracy.
	The ISBI 2012 single particle challenge.
	Current TrackMate version accuracy against the ISBI dataset.
	Scenarios.
	Example images from the challenge dataset.
	Accuracy measurements.
	Parameter used.
	Results.

	Comments.

	Spot detectors performance.
	The test environment.
	Processing time for a 2D image as a function of its size.
	Processing time for a 3D image as a function of its size.
	Processing time for a 2D image as a function of the spot radius.
	Processing time for a 3D image as a function of the spot radius.
	Choosing between DoG and LoG based on performance.

	Interoperability.
	Importing and analyzing TrackMate data in MATLAB.
	Installation of TrackMate functions for MATLAB.
	The simple case of linear tracks.
	Importing the spot feature table.
	Importing the edge track table.
	Importing TrackMate data as a MATLAB graph.
	Other MATLAB functions for TrackMate.
	Application examples and links.

	Scripting TrackMate in Python.
	A full example.
	Loading and reading from a saved TrackMate XML file.
	Export spot, edge and track numerical features after tracking.
	Manually creating a model.

	Extending TrackMate.
	How to write your own edge feature analyzer algorithm for TrackMate.
	Introduction.
	TrackMate modules.
	Basic project structure.
	Core class hierarchy.
	Feature analyzers specific methods.
	Multithreading & Benchmarking methods.
	The core methods.
	isLocal().
	process(Collection< DefaultWeightedEdge > edges, Model model).

	Making the analyzer discoverable.

	How to write your own track feature analyzer algorithm for TrackMate.
	Introduction.
	Track analyzers.
	Track feature analyzer header.
	Declaring features.
	Accessing tracks in TrackMate.
	Calculating the position of start and end points.
	Wrapping up.
	How to disable a module.

	How to write your own track feature analyzer algorithm for TrackMate.
	Introduction.
	Spot analyzers and spot analyzer factories.
	The spot analyzer factory.
	The spot analyzer.
	Using SciJava priority to determine order of execution.
	Wrapping up.

	How to write your own viewer for TrackMate.
	Introduction.
	A custom TrackMate view.
	The ViewFactory.
	The TrackMateModelView interface.
	Methods.
	Display settings.
	Listening to model changes.
	Listening to selection changes.

	A simple event logger.
	Controlling the visibility of your view with the SciJava visible parameter.

	How to write custom actions for TrackMate.
	Introduction.
	The TrackMateActionFactory interface.
	SciJava parameters recapitulation.
	Action factory methods.

	The TrackMateAction interface.
	Wrapping up.

	How to write your own detection algorithm for TrackMate.
	Introduction.
	The SpotDetector interface.
	A detector instance operates on a single frame.
	A SpotDetector can be multithreaded.
	Detection results are represented by Spots.
	A dummy detector that returns spiraling spots.

	The SpotDetectorFactory interface.
	Getting the raw image data.
	Getting detection parameters through a configuration panel.
	Checking the validity of parameters.
	Saving to and loading from XML.
	Instantiating spot detectors.
	The code for the dummy spiral generator factory.

	Wrapping up.

	How to write your own particle-linking algorithm for TrackMate.
	Introduction.
	Simple, undirected graphs.
	Graphs in TrackMate.
	Particle-linking algorithms in TrackMate.
	A dummy example: drunken cell divisions.
	The factory class.
	Wrapping up.

